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Abstract

Reverberation mapping is a technique in which the mass of a Seyfert I galaxy’s central supermassive black hole is estimated,
along with the system’s physical scale, from the timescale at which variations in brightness propagate through the galactic
nucleus. This mapping allows for a long baseline of time measurements to extract spatial information beyond the angular
resolution of our telescopes, and is the main means of constraining supermassive black hole masses at high redshift. The
most recent generation of multi-year reverberation mapping campaigns for large numbers of active galactic nuclei (AGN) (e.g.
OzDES) have had to deal with persistent complications of identifying false positives, such as those arising from aliasing due to
seasonal gaps in time-series data. We introduce LITMUS (Lag Inference Through the Mixed Use of Samplers), a modern lag
recovery tool built on the “damped random walk” model of quasar variability, built in the automatic differentiation framework
jax. LITMUS is purpose-built to handle the multimodal aliasing of seasonal observation windows and provides Bayesian evidence
integrals for model comparison and null hypothesis testing, a more quantified alternative to existing post-fit selection methods.
LITMUS also offers a flexible and modular framework for using more expressive high dimensional models for the AGN variability,
and includes jax-enabled implementations of other popular lag recovery methods like nested sampling and the interpolated
cross correlation function. We test LITMUS on a number of mock light curves modelled after the OzDES sample and find that
it recovers their lags with high precision and successfully identifies spurious lag recoveries, reducing its false positive rate to
drastically outperform the state of the art program JAVELIN. LITMUS’s high performance is accomplished by an algorithm for
mapping the Bayesian posterior density which both constrains the lag and provides Bayesian evidences for model comparison
and null hypothesis testing while outperforming nested sampling in computational cost by an order of magnitude. ©
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broadening of the emission lines), allows us to measure the
mass of the AGN’s central supermassive black hole.

Though uncertainty in the geometry and kinematics of
the system mean that BLR RM requires a low-redshift
anchor to measure masses, it nevertheless forms a powerful
tool for measuring quasar masses to cosmological distances.
Recent years have seen the close of the first generation
“industrial-scale” RM surveys, namely the Sloan Digital Sky
Survey (SDSS; Shen et al. 2015) and the Australian Dark
Energy Survey (OzDES; King 2015; Lidman et al. 2020),
with large numbers of AGN observed out to high redshifts.
Such surveys measure AGN masses directly, but also use
their measurements to constrain the “radius-luminosity”, or
R — L, scaling relationship for AGN: an observed power-law
between the scale of the BLR and the mean photometric
luminosity of the quasar (Kaspi et al. 2000).

Though these large scale surveys collect hundreds to
thousands of RM lags, they are impacted by the problem of

1. Introduction

Reverberation mapping (RM) is a technique in which we
measure the way that fluctuations of a source’s brightness
propagate through its physical components, using the delays
in the signal stimulated by this flux to estimate the physical
scale of the system. In this way, RM substitutes tempo-
ral resolution for angular resolution in our observations,
allowing us to tease out spatial information about in-sky
point-sources. The technique was first introduced (Blandford
& McKee 1982; Peterson 1993) in measuring the scale of
the broad line region (BLR) of active galactic nuclei (AGN),
measuring the lag between variations in the broad-band
photometry, dominated by the AGN’s central accretion disk,
and the emission lines excited in the BLR, observed via
spectroscopy. Assuming a virialized orbit of the BLR, this
radius (together with velocity measurements from Doppler
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aliasing: the emergence of multiple peaks in the lag posterior
distribution that emerges from the annual six month seasonal
gaps in observations. Aliasing has proven to be a major issue
in long-baseline RM, with significant efforts being directed
towards either suppressing spurious lags in the posterior
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filtering out suspect lags through quality cuts (e.g. Penton
et al. 2021; Yu et al. 2023; Shen et al. 2023; Penton et al.
2025). Such methods often disagree about how many sources
to keep, and the most stringent of them can lead to as many
as 90% of sources being discarded to ensure the purity of
the remaining 10% (see McDougall 2025, for a comparison
and discussion).

As well as extending into higher redshifts and farther
sources, RM has also evolved to probe both smaller and
larger physical scales of the AGN, with RM being applied to
both the large dusty torus that orbits beyond the BLR (e.g.
Suganuma et al. 2006; Koshida et al. 2014; Minezaki et al.
2019), and also to smaller scales (roughly light-days) of the
accretion disk itself (Fausnaugh et al. 2016; Yu et al. 2020a).
RM of the accretion disk typically measures lags between
observations in different photometric filters, comparing the
bluer light from the hot interior of the disk to the redder
outer edge, allowing both the size and temperature profile
of the disk to be constrained. Where X-ray observations are
available, we can also probe the emission from the black
hole’s corona that is believed to be the driving signal of the
AGN variability (Cackett et al. 2007). Though RM alone
only directly measures scale, it can also be used to infer
properties in other dimensions. For example, in recent years
intensive broad-band RM has revealed possible evidence
of viscous motion of the disk material, identifying a “long”
timescale of possibly negative lag associated with the inwards
migration of hot material from the disk’s cooler outer edge
to its hot interior (e.g. Herndndez Santisteban et al. 2020;
Secunda et al. 2023). Such measurements imply a disk that
is significantly thicker than the traditional “optically thick,
geometrically thin” disk assumed by the famous thin-disk
model of Shakura & Sunyaev (1973). For a review of these
techniques, we direct the reader to the excellent review of
RM at different scales by Cackett et al. (2021).

High cadence of X-ray reverberation allows for complex
Fourier analysis that infers multiple lags from different parts
of the signal (for a more thorough review, see Uttley et al.
2014). A similar increase in complexity allows for “velocity
resolved” reverberation mapping, which aims to constrain
the geometry of the BLR in addition its characteristic scale.
All other RM falls under the roof of time delay estimation,
most commonly between two light curves at a time, in which
we aim to constrain a single characteristic delay between
the two signals. For quasars we have a convenient statistical
description of AGN variability: though they lack determinis-
tic light curves, their stochastic variations are found to follow
closely to the power spectral density of the “damped ran-
dom walk” (DRW), a first order continuous auto-regressive
process (i.e. one that acts like red noise at short timescales).
The DRW is an example of a Gaussian process (GP), a class
of stochastic signals that are well suited to modelling AGN
variability well in general (we give a brief overview in this
paper, but for a full review of GP’s in astronomy see Aigrain
& Foreman-Mackey 2023).

Since its inception, RM has seen a steadily evolving bank
of tools for this time delay estimation / lag recovery task.
These broadly fall into two categories: those that model the
AGN light curves as a Gaussian Process and are agnostic
about the underlying statistical behaviour of the light curve
and parameters, and those that use our understanding of
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the statistical properties of the AGN’s stochastic variations
to fit lags with a Bayesian generative model.

Despite its conceptual simplicity, this is far from a trivial
task. Aside from the ever growing tool-chest of AGN RM,
the adjacent field of estimating quasar time delays from
gravitational lensing, essentially the same statistical prob-
lem, encountered enough issues to warrant the Time Delay
Lens Modelling Challenge (Ding et al. 2020, 2021), an open
competition amongst a number of teams to find even a single
robust and reliable method for inferring lags. Though the
more rigorous GP models have been in place for well over
a decade, non-GP methods are still often used thanks to
their low numerical cost and apparent lower sensitivity to
aliasing. In this paper, we show that the aliasing problem of
the GP methods is in fact overstated, and a result not of the
fundamental statistical properties of RM or seasonal obser-
vations but rather a numerical artefact owing to a choice of
sampling method incorrect for this problem. In this paper
we provide a new code, LITMUS, which solves many of the
challenges of aliasing while putting rigorous statistical con-
straints on its impact, discussed in detail in Section 4. We
describe the statistical modelling and numerical fitting of
this new method, and demonstrate that this approach can
both recover lags in mock data better than existing tools
and that it can distinguish between true lags and spurious
false positives.

2. Principles of Reverberation Mapping & Complications
Therein

In the most general sense, RM is a technique of measur-
ing the radial scale of a system, however in the context
of surveys like OzDES the goal is to constrain the mass
of the central black hole via the size of the BLR. This is
done by simplifying the BLR to be a thin disk with a single
characteristic radius/ reverberation lag R = ¢ - At, where ¢ is
the speed of light. Assuming the BLR is in a virialized orbit
about the SMBH such, the virial mass can be estimated with
a line-of-sight velocity dispersion from the doppler broad-
ening of the emission line profile. The unknown geometry
and kinematics are captured in the “virial factor”, calibrated
with local anchors of known mass (e.g. from the Msvpy — M.
relationship; Woo et al. 2015; Grier et al. 2013). This fac-
tor has high population dispersion, imposing on RM mass
measurements an uncertainty floor of roughly a quarter.
RM lags are also used to constrain the power-law scaling
relationship between BLR radius and AGN luminosity (the
R — L relationship). Accurate measurement of lags is crucial
not only for inferring AGN masses, but also for constraining
the slope, offset and scatter parameters in this relationship
(e.g. McDougall 2025).

There has been a broad spectrum of approaches in
attempting to consistently and reliably measure At across all
AGN (see Section 3), and for LITMUS we adopt the approach
of Bayesian forward modelling, i.e. one in which the AGNs
signals are characterised by some set of model parameters 6
which we have constrained to some prior probability distri-
bution 7(0), and for which any 6 has a likelihood £ (D|0)
of reproducing our observational data D such that there is a
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joint distribution P(8|D)? for parameters and observations:
Z(0|D) =2 (D|0)n(0)=Z x Z(0). (1)

We describe a few existing methods for recovering lags within
this Bayesian GP framework in Section 3.1. This is the
approach taken by LITMUS. Unique to LITMUS is the calcula-
tion of Bayesian model evidence, the total “probability mass”
of the posterior distribution:

z= / 2(6|D)de. 2)

This evidence is a total “goodness of fit” for the model to
the data, and comparing the evidence for two models (their
ratio being the “Bayes Factor”) is a means of comparing
which model is more supported by observation. This is
the approach taken by LITMUS in determining whether lag
recoveries are statistically significant.

As our understanding of the AGN variability has evolved
we have come to describe their stochasticity as a GP, wherein
the time series observations y are Gaussian-correlated
observations, such that the model likelihood is:

1 |

2000)= s e (') @)
where C is the ‘covariance matrix’ constructed for all observa-
tions over all light curves, and y is the vector of observations
after subtracting off the signal means (these means also
being model parameters). This includes both the intrinsic
variance / covariance of the GP in the matrix S, and the
approximately uncorrelated white noise measurement uncer-
tainty for each observation (E; for measurement i) in the
diagonal matrix N:

C=S+N, N =G§,EE; (4)

If the underlying continuum light curve is described by a
GP with a covariance function:

9c(t) = (ye(t —1'), 3 (1)) , (5)
and some the response function is “shifted, scaled and
blurred”, i.e. multiplied by some amplitude, mean offset,
mean lag and then blurred by smoothing kernel y(¢), then
the auto-covariance of the response signal is:

0.0 = [ alyierar (6)

and the covariance between the response signal and contin-
uum is:

oul) = [[_ oty yw(e"arar" ™)

If the parameters are known, this covariance function can
also be used to reconstruct confidence intervals for the
behaviour of the light curve between observations (e.g.
Figure 1).

It has been empirically observed that AGN variability
matches closely to the damped random walk (DRW Kelly
et al. 2009; Kozlowski et al. 2010; MacLeod et al. 2010),
in which covariance function obeys the double exponential
Laplace distribution:

oty =ozexp (1) ®)

2In this paper, we use P(0) for the normalised probability distribution,
and #(0) to represent the un-normalised joint distribution, i.e. P(6) =
12(8]), where Z is the model evidence per Equation 2.

Though actual AGN variability differs slightly from a DRW
(Zu et al. 2013), it has been found that the exact choice of
GP / covariance function has little impact on lag recovery
(Yu et al. 2019).

Although LITMUS works only with single lags / response
signals in its initial release, this model also extends to the
multi-lag case by having response-response covariance for
two response signals with transfer functions i (7) and y,(7):

6ul) = [ opwi et " (9)

This multi-lag RM sees considerable use in mapping the
temperature profile of accretion disks (e.g. Yu et al. 20200),
where different colour temperatures occur at different
annular radii.

2.1. The Aliasing Problem

As reverberation mapping first pressed into the regime of
industrial scale RM, the endeavour soon ran afoul of the
confounding effects of ‘aliasing’: a suite of problems emerging
from the combination of low precision measurements (shorter
exposures, looser cadence) and the half-yearly seasonal gaps
in the observations. Aliasing manifests as a tendency for
lag recovery methods to over-report lags at and around the
“aliasing peaks”, which correspond to minimal data overlap
between the continuum and response curves (= 180d, 540d
etc.). This aliasing problem is a major confounding factor in
modern RM, with the arising false positive lags dominating
the mass measurements and R — L constraints when false
positives are not screened.

The traditional approach to the aliasing problem has been
to take a frequentist approach of quality control: drawing
a statistical cordon around the entire lag recovery method,
inclusive of the statistical model, numerical model and lag
recovery software within a single ‘black box’ and determin-
ing some fit quality measure for determining how likely a
recovery is to be erroneous. The OzDES team has adopted a
consistent, if steadily evolving, framework for this approach:
using JAVELIN as its primary lag recovery method, in con-
junction with PyCCF as a validation method, and using
simulation-based measures of the the likelihood of a false
positive to winnow down to a high purity final data set with
< 10% contamination by spurious lag recoveries. Across its
various data releases SDSS have trialled multiple different
anti-aliasing regimes. In earlier releases (Grier et al. 2017;
Grier et al. 2019), they use CREAM (Starkey et al. 2015) for
their lag posterior and validate through a combination of
down-weighting lags that lie near aliasing peaks and reject-
ing recoveries that allow for non-physical negative lags. In
their final data release they adopt a less stringent selection
criteria, using PyROA (Donnan 2021) as their primary lag
recovery method and testing for significance with the r?
recovered by PyCCF. For a full review and comparison of
these selection criteria, we direct the reader to the OzDES
RM wrap-up paper (McDougall 2025).

In the abstract sense, aliasing occurs because testing the
half-yearly “off-season” lags coincides with little to no overlap
in data between light curves. Lag recovery is as much about
rejecting poor fits as identifying good ones, and such a lack
of overlap means we have fewer chances to identify tensions
that indicate such bad fits. Between seasonal gaps, over-loose
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Figure 1. A demonstration of the sort of light curves that GP modelling can reconstruct from observations. For some time-series observations (error bars) a particular GP

models the entire family of underlying light curves that exhibit the power spectral

density of the GP, conditioned on how well they fit the observations. In this example

the light curves is fit as a DRW with 7=200d and o =1, both in arbitrary units for this demonstrative example. The shaded regions represent the 1 and 26 contours of

the distribution of all such walks.

interpolations are vague and weekly constraining, while over-
generous interpolations are at the mercy of coincidence and
can produce spurious structure. In either case, failure-modes
of the light curve reconstruction / lag testing are at their
worst at these difficult lags. In Figure 2 we demonstrate this
for mock data, and in particular show the multimodality
that occurs in the lag posterior for the specific case of a
parametric GP model. Aliasing becomes worse when the true
lag is near an aliasing peak, as these are more ambiguously
observed and produce a shallower peak in the posterior. In
such cases we can only observe tension / discontinuity in the
reconstructed light curve in the joins between observation
seasons, and so aliasing becomes more pronounced for more
rapid timescales of variability (smaller T in Equation 8) and
for fewer observed seasons.

In the example shown in Figure 2, the lag is well con-
strained to its true value as the aliasing peaks are several
orders of magnitude shallower. However some Bayesian mod-
elling tools can fail even in these cases due to the secondary
numerical challenges that aliasing poses. JAVELIN fits lags
by sampling the posterior with emcee, an implementation
of the Affine Invariant Ensemble Sampler (Goodman &
Weare 2010). Though emcee has a well earned reputation as
a robust and reliable sampler, it is decidedly not suited to
such multimodal distributions. Its proposal method, which

involves drawing a chord between two samples and perform-
ing a “stretch-move” to propose a new sample, cannot easily
mix between well separated modes. The result is the ensem-
ble of live points becomes partially ‘pinned’ at the aliasing
modes, over-sampling them and giving the false appearance
of a significant bulk of posterior density, sometimes multiple
orders of magnitude over the true height of the peak. In
Figure 3 we see the dangerous failure mode that can result:
the mirage appearance of an aliasing peak in the reported
posterior where none truly exists.

In addition to aliasing, there is a less discussed but still
important matter of the sharp dips and valleys in the poste-
rior that give is a “rough” geometry, particularly in the low
log-density regions (more commonly around the on-season
lags, between the aliasing peaks). The existence of these
“furrows” does not obscure the statistical results, but it can
make the posterior extremely difficult to navigate for some
algorithms. The sharp gradients and potential energy “walls”
can cause samplers, particularly gradient based samplers
like Hamiltonian Monte Carlo (Duane et al. 1987; Neal 1996;
Betancourt 2018) to become stuck, and the cases where
these dips go to extreme negative values can lead to unsta-
ble computational overflow. These furrows arise from the
same source as aliasing, but on a shorter timescale. At lags
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Figure 2. A demonstration of the source of the aliasing problem, specifically in the context of a parametric GP model. Top shows mock data with cadence, measurement
uncertainty and baseline similar to OzDES with a DRW timescale of 7=200d and a true lag of Ar =360d. From left to right the sub-panels show lags being tested
at Ar =0d, 180d and 360d. The left panel is clearly a bad fit as near simultaneous observations are in clear tension, and the right panel is a clear good fit as we see
very little tension. The middle panel, corresponding to the first aliasing peak, is an ambiguously good fit; the lack of overlap means we cannot observe clear tensions
between the light curves. The bottom panel shows the (un-normalised) log-natural of the posterior distribution, with all non-lag parameters fixed at their true values. At
“on-season” lags (un-shaded) we can easily reject bad fits, and so the posterior is extremely low. During the off-season lags (blue shading) there are local optima arising
from the ambiguity. The mode associated with the true lag (red dot) is clearly defined and dominates over aliasing modes, with the rest of the posterior being < 1% of
the maximum posterior density in this well behaved, high SNR example. Even so, the posterior still suffers from the rough geometry and multimodality that introduces

numerical challenges in navigating it.

where two individual observations overlap between contin-
uum and response, the sharp tension between them causes
a massive penalty to the log-likelihood, forming a deep val-
ley in the log-posterior. Furrows are then more severe for
smaller measurement uncertainty and higher measurement
cadence, paradoxically becoming more of an issue the better
our measurements are. For signals with slower variations
(larger T in Equation 8), the longer correlation timescale
smooths this effect out somewhat.

3. Existing Methods

Reverberation mapping has progressed markedly over its
decades long history, both in our understanding of the
physics and of the best-practice in constraining the lags.

Lag recovery methods can be broadly grouped into two
categories: the Bayesian GP methods which make use of
our understanding of the AGN signal statistics, and the
non-GP methods which aim to be as agnostic as possible
about the signal, using only flexible means of interpolation
and measures of goodness of fit.

LITMUS’s main fitting methods belong to the GP-based
class, and so in Section 3.1 we discuss this family and, in
examine in particular its widely used exemplar JAVELIN
and its limitations. We also discuss non-GP methods in
Section 3.2, in particular the method used by PyCCF. In
Section 3.3 we give a brief overview of methods that are not
used by OzDES/ not directly compared against LITMUS in
this paper.
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Figure 3. A demonstration of the failure mode of the Affine-Invariant Ensemble
Sampler (AIES), the MCMC proposal algorithm used by emcee, in multi-modal
distributions. Both top and bottom panels are posterior distributions generated
from the same mock data with a true lag at Ar=854d (dashed line), with the
bottom panel being the result from the AIES, the same MCMC sampler as JAVELIN,
while the top is found from exhaustive sampling of the prior range. The AIES
estimate for the posterior has produced an aliasing peak at At = 540d where none
truly exists due to its ensemble of live sampling points becoming pinned at this
minor mode.

3.1. Gaussian Process Methods / JAVELIN

The main focus of this paper is the class of GP methods
that leverage our understanding of AGN signal statistics
to work within the framework of a full Bayesian generative
model. The core principle of these methods is to take the
description of the AGN variability as a Gaussian process
(discussed in detail in Section 2), for which there is a closed
form and (somewhat) easily evaluable likelihood function.
Different methods of this class differ in three ways:

1. How they construct their covariance matrix (what GP
to describe the underlying AGN variability with, how to
describe the transfer function of the response).

2. What statistical methods they use to map the Bayesian
posterior distribution.

3. What parameter-space they define their priors over, i.e.
a purely phenomenological set of parameters to describe
the signals (signal mean, amplitude etc, in the style of
JAVELIN), or a more physically motivated set of param-
eters (SBMH mass, accretion rate etc, in the style of
CREAM).

JAVELIN is the longest standing of the GP fitting meth-
ods and has the distinction of being the most widely used.
JAVELIN (Zu et al. 2010) is a successor to the FORTRAN-based
SPEAR (Zu et al. 2011). It models the AGN light curves as
a damped random walk (following the covariance functions
outlined in Section 2) and models the response smoothing
with a “top-hat” smoothing function:
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Noting that the exact form of smoothing tends to have little
impact on the lag recovery in BLR RM (Yu et al. 2019) it
is common-place when using JAVELIN to fix the smoothing
scale, b, to some fixed value shorter than the observation
cadence (e.g. Penton et al. 2021), a choice found to have
little impact on lag recovery in OzDES-like observational
surveys (Yu et al. 2019).

JAVELIN has seen considerable use in the first industrial
scale generation of RM, being the “primary” lag recovery
method for all of OzDES (Hoormann et al. 2019; Malik et al.
2023; Penton et al. 2021; Yu et al. 2021, 2023), and some of
the SDSS releases (e.g. Shen et al. 2015). For constraining
its parameters, including the lag, JAVELIN uses the MCMC
package emcee (Foreman-Mackey et al. 2013), though ear-
lier versions used the classic Metropolis-Hastings Algorithm
(Metropolis et al. 1953). As we discuss in Section 2.1, emcee
fails to properly handle the multimodal log-probability dis-
tributions of seasonal light curves. This makes it a poor
fit to the trials of aliasing, failing to converge in even high
signal to noise cases.

Other GP-based lag recovery programs include CREAM
(Starkey et al. 2017) and MICA (Li et al. 2016), discussed
in more detail in Section 3.3. In this paper we focus our
attention on JAVELIN’s AEIS fitting method, as JAVELIN is
the primary OzDES lag recovery code and has a history as
the most prevalent tool for BLR RM.

3.2. Non-Gaussian Process Methods / PyCCF

GP methods offer the most complete way to perform lag
recovery, they are also more complicated and computation-
ally arduous. Aside from costing sheer time to compute, this
also opens room for numerical errors (see discussion of the
aliasing mixing problem in Section 2.1). For this reason, the
less rigorous but more exhaustive family of non-GP methods,
which make as few assumptions about the underlying signal
properties as possible, are still actively used in conjunction
with or in preference over their more statistically precise
GP cousins.

Such non-GP methods are valuable in that their lack
of loose commitment towards a particular signal model
lends them a flexibility and vagueness that absorbs our
uncertainty about the AGN signal properties. Such models
tend to also be numerically inexpensive, allowing exhaustive
searches of their respective parameter spaces forcing their
way past potential numerical challenges. Though LITMUS is
primarily a GP method, we include these here for the sake
of completeness and comparison.

Of the extant methods of lag recovery, the Interpolated
Cross-Correlation Function (ICCF Gaskell & Peterson 1987),
is conceptually the simplest. The ICCF describes the best
fit lag as being the one that maximises the cross correlation,
r, between the emission and response light curves:

U1(t),y2(t — Ar))

e = Vi), y1@)) 42(0), y2(8))

(11)
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where y; and y; represent the sets of photometric and
spectroscopic amplitudes respectively, and angled brack-
ets indicate an inner product. Because the measurements
are not simultaneous, the ICCF reconstructs one or both of
the light curves by linearly interpolating between observa-
tions. The uncertainty in the recovered lag is estimated from
‘bootstrapping’: repeating the lag recovery over multiple real-
isations generated by randomly sub-sampling observations
and re-sampling within their measurement uncertainties.

The ICCF method has been found to agree with more
rigorous models like JAVELIN to within statistical bounds,
though with higher reported uncertainties (Yu et al. 2019).
Owing to its numerical robustness and low computational
overhead, it is still used as a validation tool by both
OzDES (Malik et al. 2023; Yu et al. 2023; Penton et al.
2025) and SDSS (Shen et al. 2023) to identify and remove
poorly performing for lags recovered by more complex meth-
ods. For comparison, LITMUS includes a jax accelerated
implementation of the ICCF method in its array of fitting
algorithms.

In their final RM data release, Shen et al. (2023) make
use of the non-GP method PyROA (Donnan 2021), discussed
in more detail in Section 3.3. In this paper we focus on a
comparison with the ICCF method, which OzDES uses as
a secondary method as a part of its validation and quality
cuts.

3.3. Other Methods

Here we give a brief overview of three lag recovery methods
that have been widely used outside of OzDES’s RM program:
CREAM, MICA and PyROA.

CREAM. The GP-based fitting method CREAM (Starkey et al.
2015) is similar to JAVELIN in its modelling of the AGN light
curve as a stochastic process and using Bayesian fitting,
but differs in two key respects. Firstly, instead of fitting
for the parameters of the observed signals it instead fits for
physical properties of the AGN (e.g. mass, accretion rate
etc.). Secondly it models the light curves by fitting the phase
and amplitude of a series of Fourier components and, unlike
JAVELIN, does not include the covariance of the observations
in its likelihood function, instead using a x> goodness of
fit loss function. A novel feature of CREAM is that it can be
set to rescale the error bars of measurements from different
telescopes as a part of the MCMC fitting in an internal
calibration process (Starkey et al. 2017). CREAM is used as
the primary lag recovery method by some SDSS releases
(Grier et al. 2017; Grier et al. 2019), and is included in the
reported results of their final data release (Shen et al. 2023).

MICA. Another GP-based fitting method from Li et al.
(2016) is the code MICA. The main feature of this code is
that it constructs the transfer function of Equation 5 from
a sum of Gaussian profiles with positions and widths as free
parameters that are marginalised over in the fitting process.
In this way, instead of using a simplified approximate trans-
fer function in the style of JAVELIN’s top-hat, MICA can allow
for a more detailed accounting of the BLR’s geometry. MICA
uses much of the same statistical approach as JAVELIN, but
uses the Metropolis-Hastings algorithm (Metropolis et al.
1953) in place of emcee.

PyROA. Introduced by Donnan (2021), PyROA adopts a simi-
lar strategy to the ICCF but generalises beyond the linear
interpolation kernel. It instead uses a “rolling average” to
interpolate the light curves, i.e. taking the weighted aver-
age with weights following some kernel function, e.g. a
Gaussian (multiple options are presented). The width of
the kernel is optimised at each point in the reconstructed
light curve to maximise the model Bayesian Information
Criterion (BIC Schwarz 1978), and from these reconstruc-
tions the lag is estimated with their correlation function.
PyROA is the main lag recovery method in the final SDSS
data release of Shen et al. (2023), as they find it to be more
precise than PyCCF and more reliable than JAVELIN. Like
CREAM, PyROA includes a utility to re-calibrate measurement
uncertainty of observations.

4. LITMUS Methodology

The aliasing problem presents challenges on two fronts. The
first is numerical: the posterior distribution is very diffi-
cult to properly navigate and map the shape of thanks to
its rough and multimodal shape. The second is statistical:
how can we tell when a recovery is statistically significant
when the aliasing peaks can appear to give meaningfully
constrained peaks even in the case of a false positive. Here
we present a methodologically consistent solution to to both
problems: firstly, to use novel numerical techniques to prop-
erly explore the parameter space of a proper Bayesian model,
and secondly to use this robust mapping of the posterior dis-
tribution to make use of Bayesian model comparison tools to
evaluate the significance of a lag recovery in a principled way.
In brief: we do the statistics completely, and the numerics
properly.

In this section, we introduce LITMUS €), a new lag recovery
package, based in python, making use of modern computa-
tional tools like jax (Bradbury et al. 2018) and its ecosystem
of flexible software like the statistical modelling framework
numpyro (Phan et al. 2019) and the GP modelling pack-
age tinyGP (Foreman-Mackey et al. 2022). LITMUS’s core
feature is an algorithm for exploring and integrating the pos-
terior that we call the Laplace Quadrature, which efficiently
explores the parameter space to lags while also finding an
estimate of the model evidence such that proper Bayesian
null hypothesis testing is possible. ® LITMUS also offers a
flexible and modular statistical framework that allows it to
be easily extended to new generative models, unlike existing
tools which hard-code their statistical description of the
AGN signals. We then present a new tool for RM that is
more precise, mode correct and more robust than anything
else in the literature while also being significantly faster and
more broadly applicable.

4.1. The Laplace Quadrature

The core idea of the Laplace Quadrature is to side-step the
rough geometry of the posterior along the lag-axis (e.g. see
the bottom panel in Figure 2) by not trying to navigate over
this geometry at all. Instead, a grid of test-lags are spaced

bNote that this method bears some similarity to a special case of the
Integrated Nested Laplace Approximation (INLA Rue et al. 2009; van
Niekerk et al. 2022).
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along the lag-axis, and the shape of the posterior along all
non-lag parameters is estimated with the Laplace approxima-
tion (approximating a distribution as Gaussian by a second
order expansion of its log-density). In contrast to MCMC-
like strategies which need to explore each axis of parameter
space to marginalise over them, this Laplace approximation
approach relies only on optimisation, for which the com-
plexity scales much less severely with dimensionality of the
parameter space. As such, the Laplace Quadrature approach
can be applied up to markedly higher model dimensions
without incurring an exorbitant computational burden.

We begin with a set of I ordered lags, {A;}, distributed,
though not necessarily evenly, between the upper and lower
ranges of the uniform lag prior:

Afviin <= Afg < Aty < Aty < ... < Aty < Atyax. (12)

At each of these lags, there is an (here, un-normalised)
conditional joint distribution P(¢) for all of the un-fixed
non-lag parameters ¢, (i.e. the full set of model parameters
in Equation 1 is 6 = {Ar} U ¢):

Zi(9) = 7(0INL(9|&r), Zi= [ 2i(0)do.

where Z; is the evidence integral of the un-normalised con-
ditional distribution such that Z; = %lAl:Ali' The Laplace
Quadrature approximates this distribution and evidence via
the Laplace approximation, i.e. supposing that the condi-
tional distribution can be approximated by a multivariate
Gaussian distribution:

Fi(9) = Qi(9) = (9w, %),

where the mean, p, and covariance matrix, X, of this
Gaussian can be estimated from the optimum of the distri-
bution, (f), and the Hessian matrix, H, of the log density at
that point:

(13)

(14)

p=9"x=-H(@) " (15)
Here, the Hessian matrix is the curvature of the log-density,
ie.
9% In|Z,(¢)|
H; i« el b A 4 |
0)= "G

As LITMUS is built in jax and numpyro, this Hessian matrix
can be evaluated with the need for hand-calculated deriva-
tives. Gaussian distributions have easily evaluable integrals,
and so the Laplace approximation also lets us easily calculate
Z; for each slice:

(16)

Dim(X)
RERE T

1
ln\Zi\%ln|<@i(¢')|+iln\det(2) In|27|. (17)

To summarise, the Laplace Quadrature procedure is:

1. Generate some set of ordered lags {A#;}.

2. At each lag Af;, optimise all other free parameters ¢ to
find the conditional optimum ¢'.

3. Calculate the density 27;(¢') and Hessian matrix H;(¢ =
) of the conditional distribution.

4. Using these, form a normal distribution approxima-
tion for the conditional distribution of the non-lag
parameters (the Gaussian slice) with mean and covari-
ance from Equation 15 and with normalising evidence
from Equation 17. This is done with numpyro’s autodiff
capabilities.
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Figure 4. A simplified demonstration of the operating principle behind LITMUS's
Laplace Quadrature for a case of only two free parameters (lag and DRW timescale).
First, a 1D locus of conditional optima is traced out along the lag axis (orange
line), finding the conditional optima at a discrete grid of lags (white points). At
these points, the Laplace approximation is applied to divide the posterior up into
a series of Gaussian slices (purple, shaded).

5. With the integral at each Gaussian slice, use finite element
integration along the At axis to estimate the full integral
/ model evidence via Simpson’s rule, the Trapezoidal rule,
etc.

A simplified example of this for a case where ¢ = {t} and I =
5 is shown in Figure 4. Evenly spaced test lags are wasteful
and error-prone, and so LITMUS uses a “grid smoothing”
algorithm, outlined in Appendix B, to preferentially sample
good-fit lags. For the optimisation to find ¢’ we use jaxopt’s
implementation of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (Broyden 1970; Fletcher 1970; Goldfarb
1970; Shanno 1970), using also a pre-conditioning scheme
described in Appendix C. Assuming that ¢ is a smooth
and continuous function of Az, we use the solution ¢’ as the
starting point for finding (/’3”1. To find the Hessian matrix,
we use jax’s autodiff tool-set on the probability log-density
functions provided for a particular model by numpyro.

4.2, Statistical Modelling

In its statistical modelling, LITMUS adopts the same approach
as JAVELIN in describing the AGN fluctuations as a damped
random walk and using the Bayesian likelihood in Equation 3.
For simplicity, we do not include any smoothing of the
response function, i.e. we use a transfer function y(¢) = 6(r),
where 0 is the Dirac delta function. Again following the lead
of JAVELIN, we adopt uniform priors for all variables, except
the damping timescale T and continuum signal amplitude
o, which are fit on a log-uniform scale owing to their strong
correlation and the lack of a prior knowledge of the magni-
tude of the signal timescale. In this way, LITMUS’s statistical
models are one-to-one with JAVELIN’s under the condition of
no smoothing, i.e. b=0 in Equation 10. We can define two
simpler models to test the significance of our lag recovery
against:
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e The continuum and response being uncorrelated DRW’s,
i.e. no lag encoded in the signal, and

e The continuum being a DRW, but the response being
pure white noise.

The Bayes factors comparing these models allows us to test
the significance of a lag recovery. For an example of how
these ratios can be interpreted, see Section 4.4.

4.2.1. Alternative Statistical Models

A useful feature of LITMUS is that, unlike existing tools which
hard-code their statistical models, its modular design means
that LITMUS can also fit alternative statistical descriptions
of the signals, e.g. the null hypothesis models used to test
the significance of lag recoveries. As an example, LITMUS
includes an alternative to the normal GP modelling but using
an adjustable log-normal prior of the kind that would be
recovered from an R — L relationship, i.e. w(Ar) ~ 4. Similar
extensions can be made to incorporate the flexible transfer
functions of MICA or the physically motivated parameteriza-
tion and error calibration of CREAM, features that LITMUS’s
initial release lacks.

This modularity also allows for more expressive models
to probe physical phenomena, for example:

e Using a summation of additional GP kernels to examine
differences between the signal and the canonical DRW,

e Modelling the BLR holiday (Dehghanian et al. 2019), e.g.
with a short-lived signal super-imposed on the GP signal,
or

e Testing models with time-varying lags to investigate
changes in the BLR shape or scale

are all implementable in LITMUS if they can be expressed
with a numpyro generative model, and can be fit by a suitable
choice of its existing fitting methods.

4.3. Additional Algorithms

As well as the Laplace Quadrature, LITMUS includes other
lag recovery algorithms for comparison. Firstly, it includes
a jax based high speed implementation of ICCF. Secondly,
it includes a variation of the Laplace Quadrature that uses
stochastic variational inference (SVI) in place of the Laplace
approximation, and finally it has an interface with the nested
sampling (Skilling 2006), specifically JAXNS (Albert 2020).

4.3.1. The SVI Quadrature

The Laplace Quadrature relies on Laplace approximation,
which can be fragile against highly non-Gaussian posteriors.
As an extension LITMUS also offers the SVI Quadrature,
which has similar working but uses SVI to generate its
Gaussian distribution approximation. While the Laplace
approximation fits a Gaussian with a point-estimate based
on the Hessian of the log-posterior at its maximum, SVI
seeks to fit a Gaussian that is ‘most similar on average’ (see
Figure 5 for a visual demonstration). This is codified by the
Kullback—Leibler divergence (KL divergence), or “average
log difference” between the Gaussian ‘surrogate distribution’

9
in Equation 14 and the true posterior density:
Pi(9) H
KLp.(s)0:(0) =E [In , (18)

where P;(¢) is again the un-normalised joint distribution
conditioned at test lag Af’. The slice evidence Z; is not
known a priori, but can be factored out of the expression,
such that the minimum value of KL can be found to within
an additive constant:

Zi(9) H
Qi(9) 11 gi(9)

It can be shown that the KL divergence is always positive,
which means that In|Z;| is always greater than or equal to
the expectation value in Equation 18, being equal at a
perfect match between the surrogate distribution and the
true posterior (i.e. when KL=0). As such, this is called the
“Evidence Lower Bound” (ELBO) of the fit, and can be
approximated by evaluating the log-difference at samples
drawn from Q;(¢):

KLz (9)-0i(0) =E [m ~In|Z|

In |Zi| > ELBOp, 5).0,(9) ~ » O~ Qi(9m)

(19)

By maximising the ELBO we find both the highest (best)
estimate of the evidence, and also the surrogate distribution
that is the closest fit to the posterior. This is done by
assuming some parametric ansatz form for the surrogate
distribution and optimising these parameters. In our case we
use the normal distribution in Equation 14 with parameters
being the mean and covariance. In actuality the symmetry of
the covariance matrix means that we optimise the elements
of its Cholesky decomposition, L, where £ =LLT.

The exact value of the ELBO is not easily evaluable, and is
instead estimated from the summation in Equation 19. This
is a necessarily stochastic measure as it relies on a finite set
of random samples. As such maximising the ELBO makes use
of stochastic optimisation. In LITMUS’s case, use numpyro’s
ready-built SVI tool set and the stochastic optimiser ‘adam’
(Kingma & Ba 2017). Aside from using SVI to estimate the
Gaussian slices and the ELBO to estimate the slice evidence,
the SVI Quadrature operates identically to the Laplace
Quadrature in Section 4.1.

i M Wi((f’m)
> ln‘ 0i(9n)

m=1

4.3.2. Nested Sampling

Nested sampling (Skilling 2006) operates by taking a uni-
formly distributed ensemble of ‘live points’ along with a
statistical estimate of the volume of parameter space that
they subtend. Its iterations slowly shrink and split the vol-
ume subtended by this ensemble, at each step keeping track
of changes to this volume. The result is an ordered series of
Lebesgue integral elements describing the nominal posterior
density and volume of a series of contours, the summation
of which estimates the evidence integral.

In LITMUS we include nested sampling by way of JAXNS, a
jax-accelerated implementation that combines the Gaussian
shell approach of MultiNEST (Feroz et al. 2009) with the
Slice sampling of PolyChord (Handley et al. 2015). Unlike
the Laplace and SVI quadrature methods, no assumptions of
Gaussanity are made, and so this approach is unconditionally
convergent in the limit of large sampling. For the specifics
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Figure 5. A demonstration of the difference in the Laplace and SVI approximations,
both attempting to emulate a Cauchy distribution (black solid line). The Laplace
approximation (blue dotted line) creates a Gaussian that matches the curvature at
the MAP of the true distribution, and in this case under-estimates the distribution
everywhere else. The SVI approximation, here also fitting a Gaussian, instead
tries to get as close as possible to the true distribution ‘on average’, and so
under-estimates in the core region while balancing the impact on the evidence
integral with over-estimates in the distribution’s tails.

of Nested Sampling, including its convergence diagnostics
and uncertainty estimates, we direct the reader to Ashton
et al. (2022) for a more detailed review.

4.4. Hypothesis Testing

LITMUS’s biggest improvement over existing methods is its
ability to not only constrain the best fit lag, but deter-
mine the significance of there being a lag at all. We can
demonstrate this feature on mock data, using models from
Section 4.2 and Bayesian evidence using the algorithms in
Section 4.1 and Section 4.3. As an example we can use the
prickly At =540d case, shown in Figure 6, which falls into
one of the aliasing gaps and so is maximally ambiguous. At
this lag we generate six mock cases, shown in the top panel,
broken into high SNR and low SNR examples:

e A continuum and response that actually encodes a lag.

e That same continuum, but with a response from a different
mock such that it is still a DRW with the same timescale,
but encoding no meaningful lag response.

e The same continuum again but with a response signal
that is pure white noise, encoding no signal structure
whatsoever.

In this way we can use Bayes factors (ratios of the mod-
els’ Bayesian evidences) to test null hypotheses via model
comparison. Here we formalise this process as asking two
questions: is there a signal in the response, and if so does
this signal demonstrate a significant lag? We consider a
"strong” result to be a Bayes factor of 100x or more, and a
moderate result to be a factor of 10x or more. Using the
Laplace Quadrature we find that we successfully identify
the true lag where it exists, and our evidence calculations
allow us to identify and exclude the spurious recoveries for
the two false mocks at high SNR.

Figure 6 contains a demonstration of LITMUS’s ability to
use Bayes factors to distinguish if a signal is lag-carrying
and/or contains structure. We simulate mock light curves
emulating the cadence and uncertainty of OzDES in two
cases: mocks with a low measurement uncertainty and easily
observable slow fluctuations with a variational timescale
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signal of 7=1200d, and mocks with a higher measurement
uncertainty and a more rapid variational timescale of 7= 50d
that is difficult to distinguish from white noise with such
a coarse observational cadence. For each case we simulate
a single continuum but three different response signals: a
simulated reverberation response with a lag of Ar =540d, a
response that follows the same DRW but is decoupled such
that there is no observable lag (equivalent to At — ) and
a response that is drawn purely from white noise (equiva-
lent to a variational timescale of 7=0). Using the Laplace
Quadrature’s evidence integrals, LITMUS can successfully
recover the truth for all tests at strong significance (all true
positives and true negatives) in the high SNR case, and
returns no false positives even when the constraints are
weak.

5. Validation of Results

The example in Section 4.4 demonstrates LITMUS’s success
on a small number of mocks, but it is necessary to also show
that it performs reliably at scale. In this section, we test and
compare LITMUS’s performance against existing methods on
three sets of mocks:

1. A set of 440 mock AGN with lags distributed uniformly
in At € [0,1000] d and timescales drawn log-uniformly in
100 — 1000 d.

2. A similar sample of 490 mocks with lags drawn from a log-
normal distribution, Az ~.47(2,0.4), roughly emulating
the spread of the OzDES Mgi1 sample.

3. The same set of 490 mocks in set 2 but with the response
curves randomly regenerated to create lag-free mocks,
similar to the decoupled responses in Fig 6.

Mock set 1 allows us to interrogate LITMUS’s performance
in lag recovery and its resistance to aliasing, particularly
in contrast to JAVELIN’s AEIS method, while mock sets 2
and 3 allow us to examine how the Bayes factor allows us
to screen for false positive lags. The decoupled mocks are of
physical interest as they correspond to the case of the lag
being longer upper limit detectable in a particular survey, as
can happen for longer observer-frame C1v lags (Penton et al.
2025). Mocks are all generated with continuum and response
amplitudes of unity and zero mean, with weekly cadence
and ~ 1% uncertainty for the continuum observations and
monthly cadence with ~ 10% uncertainty for the response
light curves.

For each mock in each set, we recover the lag with
LITMUS’s Laplace Quadrature, SVI Quadrature and Nested
Sampling fitting methods, as well as its in-built ICCF and
JAVELIN-like AEIS fitting methods.® The fitting parameters
for each method are listed in Appendix C. For a fair compar-
ison we only include mocks for which all five fitting methods
are have fully converged. For the Nested Sampling method
we use 10* live points, enough to ensure good performance,
so that this well established algorithm can act as a bench-
mark to test the other four fitting methods against. In this
benchmarking, use the rough metric of a lag being correct or

°The AEIS method does not map exactly to a true JAVELIN fit as no
smoothing is applied from a transfer function and fitting is performed in
the unconstrained domain (See Appendix A).
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Figure 6. Mocks and evidence ratios for the demonstrative mock signals in the body of the text. The top panels shows the mock light curves for continuum (blue) and
response (pink) signals. The left and right columns correspond to high and low SNR, while the rows from top to bottom show the mocks for a coupled response at a lag
of At =540d, a decoupled response and a pure white noise response. The bottom panel shows the differences in log-Bayes factors for each of the hypotheses in Tablel,
with orange bars being how strongly we can see structure in the response signals and blue bars being how well we can confirm the existence of a lag from this structure,
with dotted lines indicating different significance levels in favour of accepting or rejecting these hypotheses. Red and green markers dots indicate the ground truth for
each question: green circles mean true, red squares mean false.

10g|o ‘Z/thiteNoise ‘
Mock Type Low SNR Mocks High SNR Mocks
Lag Structure, No Lag Lag Structure, No Lag
+ Structure No Lag or Structure + Structure No Lag or Structure
Lag Response 7.3 4.8 0.0 1.5 1.5 0.0
Uncoupled Response 0.7 3.6 0.0 0.2 0.6 0.0
White Noise Response -15.4 -5.1 0.0 1.2 0.6 0.0

Table 1. Bayes factors (log scale) of model evidences when the different mocks in Figure 6 are fit with a model that encodes a lag response or that encodes
an uncoupled but still structured response signal as compared to a model in which the response is unstructured noise. The bottom panel of Figure 6 shows
the Bayes factors from these evidences that are used to test different hypotheses / compare the relative strength of the different models.

incorrect if it agrees / differs from the true lag by a threshold
of 30d.

As can be seen in Figure 7, LITMUS’s aliasing friendly fit-
ting methods produce posteriors that map closely to the true
mock lags save a few outliers that can be mostly screened
with significance tests (see Table 2). We can also see that
the Laplace Quadrature’s assumption of Gaussianity does
not significantly disrupt this result as compared to Nested
Sampling. Conversely, the results from the JAVELIN-like
ATES are heavily obscured by the impacts of aliasing, with

more than half the posterior samples sitting in the seasonal
striations of the aliasing bands. Even before screening spu-
rious lags with Bayes factor tests, LITMUS’s various fitters
are significantly better than the AEIS at identifying correct
lags.

In Figure 8, bottom panel we can see how the Bayes factor
acts as a measure of the reliability of lag recoveries. As the
Bayes factor between the models of lag-bearing and decou-
pled response becomes smaller, the error in the recovered
lag (measured from the posterior median) rapidly increases.
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Figure 7. A comparison of the posterior distributions for the lag error, i.e. the difference between true and recovered lag, comparing some of LITMUS's aliasing-friendly
methods, namely Nested Sampling (left panel) and the Laplace Quadrature (middle panel), to the JAVELIN-like AEIS (right panel). These plots are for mock sample 1
which has 440 mocks with true lags distributed uniformly over the range Ar € [0, 1000] d. The aliasing fraction is the fraction of samples / posterior density that sits more
than 30d from the true value for these mocks. The Laplace Quadrature and Nested Sampling results adhere extremely closely to the true lags save for a single errant
false positive, and the similarity between the two validates the Laplace Quadrature’s recovery of the true posterior shape. Conversely, more than half the AEIS samples
are incorrect, and the posterior median (black dots) is often far from the true value.

Figure 8 also shows in its top panel how the Bayes factor
helps to separate signals that do and do not encode lags
within our prior range, with the decoupled population (mock
set 3) sitting almost entirely at Bayes factors of Z,/Z; < 1.
This shows how the Bayes factor offers a direct and easily
implementable means screening low confidence lag recover-
ies, and how this quality cuts can be tuned to a nominal
level of reliability.

We compare all of LITMUS’s fitting methods, in concert
with a quality cut of enforcing Z,/Z; > 10, to the existing
methods of lag recovery (JAVELIN-like AEIS and PyCCF-like
ICCF) in Table 2. To roughly emulate the quality cuts
of the Mgn OzDES sample, we employ the first 2 of Yu
et al. (2023)’s quality cuts on the AEIS results, namely that
the width of the AEIS posterior, as measured between the
16*" and 84" percentiles, is less than 110d, and that the
AEIS and ICCF methods agree to within 20, where o is
the standard deviation of the AEIS posterior. For the ICCF
results we retain only results that agree with the AEIS to
within 100d, and for which the standard deviation of the
bootstrapped lag recoveries are also less than 100 d.

Prior to applying cuts, LITMUS’s alias-friendly methods
identify the correct lag in both the uniform and log-normal
samples with a False Positive Rate (FPR) of < 5%, while
the ICCF and AEIS methods recover the incorrect lag at
an FPR of ~40% or higher in these mock sets. After dis-
carding sources with a Bayes factor Z,/Z; < 10, the LITMUS
results improve even further, and importantly retain the
vast majority of true recoveries. By contrast the AEIS and
ICCF methods, while still seeing a decrease in FPR, do so
at the cost of discarding much of the sample. Similarly in
the entirely decoupled mock set 3, which contains only false
positives, the Bayes factor test removes ~ 98 — 99% of these
sources while the ICCF and AEIS cuts retain almost ten

times more. In short, LITMUS’s methods identify the cor-
rect lag more often and performs much better at discarding
incorrect lags.

Note that these result should not be considered indica-
tive of the actual FPR in the published OzDES Hf3, Mgi1
and C1v lags, as these mocks samples to not fully emu-
late the physical OzDES sample, nor do they apply all of
OzDES’s stringent selection criteria. With that being said,
the improved performance of LITMUS’s methods in fitting
lags over ICCF and AEIS are clear.

6. Discussion & Future Work

LITMUS’s improved handling of the aliasing problems of multi-
year RM surveys means that, by being applied to existing
data, it stands to improve the statistical power of our RM
results without the need for new observations. McDougall
(2025) found that the collective constraining power of the
entire literature of RM measurements is sufficient to con-
strain the high redshift R — L relationships such that the
statistical uncertainty is subdominant compared to the inher-
ent population noise. However, it is not confirmed whether
a single R — L relationship is sufficient to explain all AGN
behaviour over all time. Current constraints are not enough
to test the possibility of time-varying R — L relationships,
and the existing sample is restricted to only a narrow window
of redshift-luminosity space. Through LITMUS’s hypothesis
testing we can not only successfully recover more lags, but
also expand their breadth in parameter space, and so will be
equipped to begin using RM as a probe of more expressive
physical models.

One such question is McDougall (2025)’s finding that the
lags associated with the MgiI line were systematically and
significantly larger than those of Hf, indicating that the
Mgili emission region of the BLR may be exterior rather than
cospatial with that of HB, contrary to existing observations
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Figure 8. A demonstration of how the Bayes factor acts as a measure of lag
reliability. The top panel shows histograms of the Bayes factor evidence ratios for
the decoupled mocks with no lag (grey), mocks with a lag that was successfully
recovered (navy) and mocks that had an underlying lag but for which the posterior
median of the recovery was more than 30d from the ground truth. The bottom
panel shows how the error in the lag (here, the deviation between ground truth
and posterior median) decreases for strong Bayes factors. As the evidence ratio for
the lag and decoupled models lowers, the error in the median recovered lag rapidly
increases, and above some reasonable threshold (e.g. Z,/Z; > 10%, the results
become significantly more reliable. The solid, dashed and dotted lines represent
evidence ratio thresholds of 1:1, 1:10 and 1:100 in favour of a lag. The correct and
incorrect lags are for the 490 realistic mocks in mock set 2, while the mocks with
no lag are from the decoupled mock set 3.

(e.g. Shen et al. 2019). This result was significant at barely
20, meaning even a small increase in the number of Mg lags
would could confirm or falsify this finding. OzDES and SDSS
have both completed their final RM data releases, meaning
a sample of nearly 2000 AGN light curves are available for
LITMUS to be applied to.

LITMUS is a general purpose single-lag RM tool, and so
can be applied beyond this BLR RM domain. The same GP
statistical model can be applied to lensed quasar time delay
without much alteration (e.g. see the GP based approaches in
Ding et al. 2021), as well as any other single-lag estimation
applications. Because LITMUS’s statistical models can be
extended or swapped out, it can also be aimed at answering
some of the stickier questions of BLR RM, such as means
of accounting for the BLR holiday (Dehghanian et al. 2019)
or descriptions of outlier measurements.
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FPR Before | FPR After | Retained

Cuts Cuts Sources

Mock Set 1 - Uniform Lags
Laplace Quadrature 4.32% 0.57% 80.23%
SVI Quadrature 4.09% 0.59% 717.27%
Nest. Samp. 3.18% 0.00% 52.05%
JAVELIN-Like AIES 41.59% 12.90% 14.09%
ICCF 43.41% 30.34% 20.23%
Mock Set 2 - Log-Normal Lags
Laplace Quadrature 4.29% 1.30% 94.08%
SVI Quadrature 2.45% 1.07% 95.10%
Nest. Samp. 2.24% 0.00% 79.39%
JAVELIN-Like AIES 66.73% 61.54% 79.39%
ICCF 39.39% 18.75% 9.80%
Mock Set 3 - Decoupled Response

Laplace Quadrature - - 0.98%
SVI Quadrature - - 0.78%
Nest. Samp. - - 1.37%
JAVELIN-Like AIES - - 13.28%
ICCF - - 8.01%

Table 2. Summary of the performance of LITMUS's three fitting methods, the
Laplace Quadrature, SVI Quadrature and Nested Sampling approaches, as
compared the AEIS fitting method used by JAVELIN and the ICCF method
use by PyCCF, as tested on the three sets of mock light-curves (uniform in
lag, log-normal in lag to emulate the OzDES MgII sample, and mocks with
the response light curve decoupled such that no true lag is present). Listed
are the fraction of false positive lags before and after quality cuts (a lag here
being considered incorrect if it differs by more than 30 days from the ground
truth), as well as the total number of retained sources after cuts. In general,
the LITMUS fitting methods perform significantly better at identifying a true
lag where it exists, with a pre-cut FPR < 5% in all cases, reducing by a factor
of a few when removing sources with a lag recovery evidence ratio Z,/Z; < 10.
Overall, LITMUS yields significantly more and and significantly more accurate
lags, while also retaining 10 —20x fewer spurious lags from the decoupled
sample.
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Appendix A. The Constrained & Unconstrained Domain

Many Bayesian fitting algorithms encounter difficulties with hard
boundaries on model priors, and perform best when parameters
are “unconstrained”; i.e. with a domain of 8 € R, —e0 < 6 < . Such
hard boundaries have infinite gradients in log-probability and other
pathologies that can lead to artefacts or non-convergence with some
fitting methods. This is a particular concern in RM, where convention
is to use bounded uniform priors on all parameters. numpyro obviates
these difficulties with a statistical slight of hand. Prior to fitting,
all parameters with constrained priors are shifted with a change of
variables into a new coordinate space in which they are unconstrained,
e.g. for a Uniform distribution on 6 ~U,;(0) there’s a mapping
fi(a,b) =R, 6'=f(0).

KL divergences and evidences are preserved across this transfor-
mation, which changes the posterior density like:

P(6) = P(6) x J(8), (20)

where J(0) is the Jacobian of the transformation 6 — 6’. LITMUS’s
Laplace Quadrature and SVI Quadrature fitting methods (see
Section 4.3) are all performed in this coordinate system by default,
i.e. they assume that the posterior is approximately Gaussian in
this unconstrained domain. Strictly speaking all densities should be
written in terms of ¢’ and 6’ in the description of these algorithms,
but we exclude this for simplicity of reading.

Appendix B. The Grid Smoothing Algorithm

The Laplace Quadrature and SVI Quadrature algorithms divide the
lag domain into an uneven grid of Gaussian slices. If these are spaced
too sparsely we can miss important information about the posterior
peaks, particular in the narrowly constrained modes of high SNR
cases, and if they are packed too densely we can lose information
about the long tails of the distribution, which can impact the accuracy
of the evidence estimate (see Figure B-1). In the the idealised case,
the two extremes are to have the points evenly spaced across the
entire domain (JAt is constant) and having them distributed with
spacing inversely proportional to the posterior density (8Ar o< P(At)).

In LITMUS we describe a sliding scale between these with a “grid
bunching” parameter, o, where o =0 is an evenly spaced grid and
a =1 is bunched proportional to the posterior. Values in between
describe spacings whose cumulative distribution function (CDF)
is a weighted average of these two extremes. First, we find some
estimate of the best-fit parameters for the entire model, 6, and from
this point forward fix all non-lag parameters at these values, d;, to
produce a conditional distribution o« P(Af|@). Estimating the entire
marginal distribution P(Ar) would be equivalent to solving the entire
distribution, and so we form the grid based only on estimates of this
much simpler conditional distribution.

For brevity, define

At — Atyfin

Xr=—m——
Al‘Max - AtMin

(21)

and function y(x) = 2(At(x)|@). The grid smoothing algorithm is as
follows:
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Figure 1. An exaggerated demonstration of the grid smoothing algorithm for a
simple multimodal function using o =0.8 up to j=35 iterations with 32 points.
The top panel shows the true distribution (black) with its estimate from the first
evenly spaced grid (red) and the final smoothed grid (blue). The bottom panel
shows how the spacing of the grid updates over each iteration, progressing from
top to bottom, with the first and last iterations coloured for emphasis, and gray
dots representing samples from previous iterations. The initial spacing is so coarse
that it misses much of the detail of the left mode, and cuts off the right-mode
entirely. By final iteration, the estimate of the mode is significantly more accurate.

1. Start with a grid of I evenly spaced lags along x € [0, 1] and calcu-
late y(x) for each of these. These obey a cumulative distribution
function (CDF) Y°(¢) =, the CDF for initial iteration j=0.

2. Linearly interpolate between all points and from this estimate the
CDF of y: Y = [y y(x')dx'/ fol y(x)dx'.

3. Define a ‘half-step CDF’, yi+s (x), that is the weighted average of
this and a uniform distribution: Y7+ (x) = a¥’(x) + (1 — a)x

4. Draw a new set of I points whose spacings obey Y/*!(x), append
these to the set of test lags.

5. Repeat steps (ii)—(iv) until converged, usually only a few steps.

Once converged (in Figure B this is after 5 iterations), we construct
a grid of I ordered x values from the final Y (x) and convert to the
desired set of lags Af! with Af' = Anygin +x,-’" (Atptax — Afniin)-

We find that o €[0.5,0.8] tends to give the best results over a
wide range of lag posteriors.

Appendix C. Optimisation, Preconditioning &
Convergence Tests

The Laplace Quadrature algorithm’s speed comes from its shifting of
the integral problem into an optimisation problem. Good performance
then relies on this optimisation being as robust and efficient as
possible. To aid in the speed and reliability of this convergence, we
use three tricks in the course of this optimisation:

1. Using point estimators of the model parameters for a good ‘seed’
location for the optimisation.

2. Using the optimum of each slice as the start for the following
slice, and ordering these to be as smooth as possible, and

3. Preconditioning the function to be optimised to make the posterior
as close as possible to a unit Gaussian.
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Estimating Seed Parameters

To initialise the Laplace and SVI quadrature methods and the grid
generation, we attempt to find the maximum a posteriori estimate
(MAP), i.e. the highest point in the posterior density. This opti-
misation requires an initial ‘seed’ location. If not specified, this is
calculated assuming stationary signal statistics to estimate the mean
and amplitude of the continuum and response signals, i.e.:

—1
Heont/resp = (Z Eiz) Z Efzyia
1 1

(22)

~1
o-com/resp = (Z Ei2> Z Eliz (yi - li)2~

To find a good starting value for 7, we use the ICCF method
outlined in Section 3.2 to estimate the auto-covariance function of the
continuum. This estimate becomes increasingly less accurate at high
autocorrelation times 67, but drawing some window |6¢| < a it should
follow close to the exponential form in Equation 8. Knowing this, we
can say that In|ACF(87)| ~ —|8¢|/7 + 2 In|o|. Drawing some window
|8¢| < a and inverting the 67 > 0 side, this logarithm becomes roughly
linear with slope %4 Taking a standard linear regression of this
function, we can then estimate 7. Precision is not too important here,
as the model parameter is In|z| in GP fitting and so is insensitive to
small deviations.

Moving from Slice to Slice

Under the assumption that the optimum is a smooth function of lag
(see Figure 4 for an illustration), we use the solution for each slice
as the starting location for the next slice. This is only done if this
solution is accepted as being a valid representative of the marginal
posterior’s local behaviour. Solutions are rejected if they:

1. Appear to be diverging, i.e. have undefined computation results,
or

2. Do not have a positive definite covariance matrix (i.e. the Laplace
approximation fails), or

3. Exhibit a severe drop in the peak posterior density compared to
the previous slice, which would suggest the slice is in one of the
furrows shown in Figure 2.

If an optimisation diverges, a second attempt is made by resetting
the start location to the seed parameters. If this second attempt fails,
the slice is discarded for all further calculations / processing.

Preconditioning

For finding the peak density, LITMUS uses the BFGS algorithm. This
algorithm performs best in unit-quadratic functions, and we gain
significant improvement in the convergence rate by linearly precondi-
tioning the density function to warp it into this shape, i.e. rather than
optimising In |P;(¢)| we optimise In |P,(¢(x))|, x=A(¢ — ¢p), where ¢
is an a priori estimate of (ﬁ,- and the starting location for optimisation,
and A is a preconditioning matrix encoding the local principle axes
and their widths. Assuming P;(¢) is roughly Gaussian, then we can
construct suitable A’s from the Hessian evaluated at ¢y in three ways:

1. From the Cholesky decomposition of the inverse Hessian, AAT =
HL

2. Performing a PDP decomposition of H to find the covariance axes
and corresponding Gaussian widths, A = PD'/2P.

3. An approximate form of (2) where we take only the diagonal
elements of H, i.e. no skewing / rotating of the axes.
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For stability purposes, any negative or zero eigenvalues are fixed
to unity in approaches (2) and (3).

Convergence & Uncertainty Estimates

Though the Laplace Quadrature’s approximation of the slice distri-
bution log-densities as quadratic functions means that its convergent
value is not exactly equal to the true model evidence, it is still neces-
sary to constrain the deviation of our numerical calculation from this
convergence point. There are two sources of numerical uncertainty
in the calculation of Z: convergence of the optimiser to the true peak
and the truncation error in the integral.

In Equation 17, errors in In |Z;| are determined to first order by
the estimate of the peak density In |P,(q$’)| Under a simple Newtonian
optimisation, the next required ‘uphill’ step is Ap = H~'Vf, and the
associated uncertainty in the peak density is VfTA¢, i.e.:

Az =-VfTH VY. (23)

Conveniently, this also has a natural interpretation in terms of
the “closeness to the peak”. Noting that the Hessian is the neg-
ative inverse of the covariance matrix, this may also be written
—APTHAY = A" C~'A¢, i.e. the square ‘number of standard devia-
tions’ that the estimated solution is from the peak under the Gaussian
approximation. This gives both a measure of the numerical uncer-
tainty in In|Z;| and also a natural measure of “closeness” to the
optimum.

The second source of numerical uncertainty is the integration
error due to the finite number of slices in the quadrature. To
estimate this, we treat the integral as having Ej, o< & (hz) error scal-
ing and sub-sample the slices, using only every second value to
get a second less precise estimate Zj/; £4 X Ejn. Approximating
the two estimates as having uncorrelated errors, their difference

is Z—Z;, =0+ /E% + (4 x E%), from which we can estimate the

integral uncertainty E as:

1
Ein ~ 7T7‘Z —Zy (24)
The convergence uncertainty always under-estimates Z; at each slice,
Aln|Z]| <0, and so we assume a worst case sum for the total conver-
gence uncertainty. These two sources are then added in quadrature
for a total evidence error estimate:

2
AZ? =EX + <Z Z; x exp(Aln z,-|)> . (25)
1
For the uncertainty in the SVI Quadrature method, we use
Equation 25 but with the Aln|Z;| of Equation 23 instead estimated
from the standard deviation of the ELBO over multiple SVI iterations
assuming a 1/v/N scaling of the uncertainty.

It is worth emphasising that this represents only the numerical
uncertainty arising from convergence of the Laplace Quadrature and
SVI Quadrature algorithms, not the uncertainty in the evidence that
arises from the Gaussian approximation of the posterior density.

Computational Speed & Tuning

A major feature of LITMUS is that it offers complete Bayesian integrals
without exorbitant computational cost. As a part of the scale-testing
in Section 5, we measure also the full runtime of the different algo-
rithms, inclusive of null hypothesis model fitting for those methods
that can do evidence integrals. The examples here are deliberately
under-tuned, with default values for most fitting parameters (see
Table 1) but with the number of iterations in the SVI Quadrature
ELBO calculations at each slice deliberately set high to ensure
convergence.

Shown in Figure C-1, we can see that LITMUS’s various fitting
methods are of comparable speed to the JAVELIN-like AEIS with
default parameters while still being significantly more reliable (see
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AL I Number of Test lags 128
Grid Bunching Parameter 0.5
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E’ 1 Nest.Samp. Max Optimisation Steps 1000
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Figure 1. Histogram of the run-times for the five fitting methods in LITMUS over all umber of 1ve points

mocks, using the fitting parameters described in Table 1. The ICCF method, which Max samples 10000
requires no matrix inversion owing to its absence of GP fitting, is consistently the

fastest. The Laplace Quadrature can perform very fast except for cases where it get Target evidence uncertainty 0.001
stuck optimising at a new test lag when the local optimum changes quickly over AEIS Parameters
the lag axis. The SVI Quadrature has a similar issue, but runs overall somewhat
slower. Number of Walkers in Ensemble 256
Total Number of Samples 200000
Warmup Samples 5000

Section 5). The multimodality in these distributions comes from
periods in the fitting of mocks with inconvenient posteriors during ICCF Parameters
which proposals / new live points are difficult to find.

L. . . R . Number of Lags in Grid 512

It is difficult to fairly compare the run times of different algorithms
due to the long list of tuning parameters for each method. With proper Number of Bootstraps 512
tuning, the SVI Quadrature and Laplace Quadrature algorithms can Number of Times for Light Curve Interpolation 1024

run markedly faster. Note also that this is not a direct comparison
with JAVELIN, only with LITMUS’s example implementation of its
fitting method, which is still built in jax and numpyro. In this way
Figure C-1 is a comparison of the speed of the algorithms and not
the codes themselves.

Table 1. Tuning parameters for the fitting methods used in Section 5.
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