Skip to content

litmus.models

Contains NumPyro generative models.

HM 24

stats_model(prior_ranges=None, out_stream=sys.stdout, err_stream=sys.stderr, verbose=True, debug=True)

Bases: logger

Base class for bayesian generative models. Includes a series of utilities for evaluating likelihoods, gradients etc., as well as various

On init, takes dict `prior_ranges' of the uniform boundaries of the parameter priors, or a single (float/int) value if the value is fixed, e.g. stats_model(prior_ranges = { 'lag': [0, 1000], 'amp': 1.0 }) Also takes logging arg from the litmus.logging.logger object.

Source code in litmus/models.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
def __init__(self, prior_ranges=None,
             out_stream=sys.stdout,
             err_stream=sys.stderr,
             verbose=True,
             debug=True,
             ):

    logger.__init__(self, out_stream=out_stream, err_stream=err_stream, verbose=verbose, debug=debug)

    self._protected_keys = []

    # Setting prior boundaries
    if not hasattr(self, "_default_prior_ranges"):
        self._default_prior_ranges: dict[str, list[float, float]] = {
            'lag': _default_config['lag'],
        }

    # ------------------
    # Wrapped function signature declarations
    self._log_density_jit: _types.Callable[[dict, _types.Any], float] = lambda params, data: 0.0
    self._log_density_uncon_jit: _types.Callable[[dict, _types.Any], float] = lambda params, data: 0.0
    self._log_likelihood_jit: _types.Callable[[dict, _types.Any], float] = lambda params, data: 0.0
    self._log_likelihood_jit: _types.Callable[[dict, _types.Any], float] = lambda params, data: 0.0

    self._log_density_grad: _types.Callable[[dict, _types.Any], _types.ArrayM] = lambda params, data: np.array([0.0])
    self._log_density_uncon_grad: _types.Callable[[dict, _types.Any], _types.ArrayM] = lambda params, data: np.array([0.0])
    self._log_likelihood_grad: _types.Callable[[dict, _types.Any], _types.ArrayM] = lambda params, data: np.array([0.0])
    self._log_likelihood_grad: _types.Callable[[dict, _types.Any], _types.ArrayM] = lambda params, data: np.array([0.0])

    self._log_density_hess: _types.Callable[[dict, _types.Any], _types.ArrayMxM] = lambda params, data: np.array([[0.0]])
    self._log_density_uncon_hess: _types.Callable[[dict, _types.Any], _types.ArrayMxM] = lambda params, data: np.array([[0.0]])
    self._log_likelihood_hess: _types.Callable[[dict, _types.Any], _types.ArrayMxM] = lambda params, data: np.array([[0.0]])
    self._log_likelihood_hess: _types.Callable[[dict, _types.Any], _types.ArrayMxM] = lambda params, data: np.array([[0.0]])
    # ------------------

    # Attributes
    self.prior_ranges: dict[str, list[float, float]] = {} | self._default_prior_ranges
    """Keyed dict like {key: [max,min] } of bounds for parameter uniform priors"""
    self.prior_volume = 1.0
    """Volume of the prior, i.e. prod(max_i-min_i) for in in params"""
    self.name = type(self).__name__
    """Name of the model for print strings"""

    # Update with args
    self.set_priors(self._default_prior_ranges | prior_ranges) if prior_ranges is not None else self.set_priors(
        self._default_prior_ranges)

    self._prep_funcs()
prior_ranges: dict[str, list[float, float]] = {} | self._default_prior_ranges instance-attribute

Keyed dict like {key: [max,min] } of bounds for parameter uniform priors

prior_volume = 1.0 instance-attribute

Volume of the prior, i.e. prod(max_i-min_i) for in in params

name = type(self).__name__ instance-attribute

Name of the model for print strings

set_priors(prior_ranges: dict) -> None

Sets the stats model prior ranges for uniform priors. Does some sanity checking to avoid negative priors e.g. stats_model(prior_ranges = { 'lag': [0, 1000], 'amp': 1.0 })

Source code in litmus/models.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
def set_priors(self, prior_ranges: dict) -> None:
    """
    Sets the stats model prior ranges for uniform priors. Does some sanity checking to avoid negative priors
    e.g.
    stats_model(prior_ranges = {
        'lag': [0, 1000],
        'amp': 1.0
        })
    """

    badkeys = [key for key in prior_ranges.keys() if key not in self._default_prior_ranges.keys()]

    for key, val in zip(prior_ranges.keys(), prior_ranges.values()):
        if key in badkeys:
            continue

        if _utils.isiter(val):
            a, b = val
        else:
            try:
                a, b = val, val
            except:
                raise "Bad input shape in set_priors for key %s" % key  # todo - make this go to std.err

        self.prior_ranges[key] = [float(a), float(b)]

    # Calc and set prior volume
    # Todo - Make this more general. Revisit if we separate likelihood + prior
    prior_volume = 1.0
    for key in self.prior_ranges:
        a, b = self.prior_ranges[key]
        if b != a:
            prior_volume *= b - a
    self.prior_volume = prior_volume

    self._prep_funcs()

    return
prior() -> [float]

A NumPyro callable prior.

Returns:

Type Description
[float]

Values of the parameters as sampled from the prior

Source code in litmus/models.py
220
221
222
223
224
225
226
def prior(self) -> [float, ]:
    """
    A NumPyro callable prior.
    :returns: Values of the parameters as sampled from the prior
    """
    lag = numpyro.sample('lag', dist.Uniform(self.prior_ranges['lag'][0], self.prior_ranges['lag'][1]))
    return lag
model_function(data)

A NumPyro callable function. Does not return

Parameters:

Name Type Description Default
data

Data to condition the model on

required
Source code in litmus/models.py
228
229
230
231
232
233
def model_function(self, data):
    """
    A NumPyro callable function. Does not return
    :param data: Data to condition the model on
    """
    lag = self.prior()
lc_to_data(lc_1: lightcurve, lc_2: lightcurve) -> dict

Converts light-curves into the format required for the model. For most models this will return as some sort of sorted dictionary

Parameters:

Name Type Description Default
lc_1 lightcurve

First lightcurve object

required
lc_2 lightcurve

Second lightcurve object

required

Returns:

Type Description
dict

Varies from model to model, by default will be a keyed dict: {'T': Time values of observations series, 'Y': Signal strength values of observations series, 'E': Uncertainty values of values in Y, 'bands': int array identifying which lightcurve (0,1) that the observations belong to }

Source code in litmus/models.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def lc_to_data(self, lc_1: lightcurve, lc_2: lightcurve) -> dict:
    """
    Converts light-curves into the format required for the model. For most models this will return as some sort
    of sorted dictionary
    :param lc_1: First lightcurve object
    :param lc_2: Second lightcurve object
    :return: Varies from model to model, by default will be a keyed dict:
        {'T': Time values of observations series,
         'Y': Signal strength values of observations series,
         'E': Uncertainty values of values in Y,
         'bands': int array identifying which lightcurve (0,1) that the observations belong to
        }
    """

    T = jnp.array([*lc_1.T, *lc_2.T])
    Y = jnp.array([*lc_1.Y, *lc_2.Y])
    E = jnp.array([*lc_1.E, *lc_2.E])
    bands = jnp.array([*np.zeros(lc_1.N), *np.ones(lc_2.N)]).astype(int)

    I = T.argsort()

    T, Y, E, bands = T[I], Y[I], E[I], bands[I]

    data = {'T': T,
            'Y': Y,
            'E': E,
            'bands': bands
            }

    return data
to_uncon(params) -> dict[str, float]

Converts model parametes from "real" constrained domain values into HMC friendly unconstrained values.

Parameters:

Name Type Description Default
params

keyed dict of parameters in constrained domain

required

Returns:

Type Description
dict[str, float]

keyed dict of parameters in unconstrained domain

Source code in litmus/models.py
268
269
270
271
272
273
274
275
276
def to_uncon(self, params) -> dict[str, float]:
    """
    Converts model parametes from "real" constrained domain values into HMC friendly unconstrained values.

    :param params: keyed dict of parameters in constrained domain
    :return: keyed dict of parameters in unconstrained domain
    """
    out = numpyro.infer.util.unconstrain_fn(self.prior, params=params, model_args=(), model_kwargs={})
    return out
to_con(params) -> dict[str, float]

Converts model parametes back into "real" constrained domain values.

Parameters:

Name Type Description Default
params

keyed dict of parameters in unconstrained domain

required

Returns:

Type Description
dict[str, float]

keyed dict of parameters in constrained domain

Source code in litmus/models.py
278
279
280
281
282
283
284
285
def to_con(self, params) -> dict[str, float]:
    """
    Converts model parametes back into "real" constrained domain values.
    :param params: keyed dict of parameters in unconstrained domain
    :return: keyed dict of parameters in constrained domain
    """
    out = numpyro.infer.util.constrain_fn(self.prior, params=params, model_args=(), model_kwargs={})
    return out
uncon_grad(params) -> float

Evaluates the log of det(Jac) by evaluating pi(x) and pi'(x'). Used for correcting integral elements between constrained and unconstrained space

Parameters:

Name Type Description Default
params

Model parameters in constrained domain

required

Returns:

Type Description
float

float of det(Jacobian)

Source code in litmus/models.py
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def uncon_grad(self, params) -> float:
    """
    Evaluates the log of det(Jac) by evaluating pi(x) and pi'(x').
    Used for correcting integral elements between constrained and unconstrained space

    :param params: Model parameters in constrained domain
    :return: float of det(Jacobian)
    """
    con_dens = numpyro.infer.util.log_density(self.prior, (), {}, params)[0]

    up = self.to_uncon(params)
    uncon_dens = -numpyro.infer.util.potential_energy(self.prior, (), {}, up)
    out = con_dens - uncon_dens
    return out
uncon_grad_lag(params) -> float

Returns the log-jacobian correction for the constrained / unconstrained correction for the lag parameter Assumes a uniform distribution for the lag prior

Parameters:

Name Type Description Default
params

Model parameters in constrained domain

required

Returns:

Type Description
float

float of det(Jacobian) for lag_uncon <-> lag_con

Source code in litmus/models.py
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
def uncon_grad_lag(self, params) -> float:
    """
    Returns the log-jacobian correction for the constrained / unconstrained correction for the lag parameter
    Assumes a uniform distribution for the lag prior

    :param params: Model parameters in constrained domain
    :return: float of det(Jacobian) for lag_uncon <-> lag_con
    """

    from numpyro.infer.util import transform_fn

    if 'lag' not in self.paramnames(): return 0
    if np.ptp(self.prior_ranges['lag']) == 0: return 0

    lagdist = dist.Uniform(*self.prior_ranges['lag'])
    lag_con = params['lag']

    transforms = {"lag": numpyro.distributions.biject_to(lagdist.support)}

    def tform(x):
        out = transform_fn(transforms, params | {'lag': x}, invert=True)['lag']
        return out

    tform = jax.grad(tform)
    out = np.log(abs(tform(lag_con)))
    return out
paramnames() -> [str]

Returns the names of all model parameters. Purely for brevity of code.

Returns:

Type Description
[str]

list of param names in order listed in prior_ranges

Source code in litmus/models.py
329
330
331
332
333
334
def paramnames(self) -> [str]:
    """
    Returns the names of all model parameters. Purely for brevity of code.
    :return: list of param names in order listed in prior_ranges
    """
    return list(self.prior_ranges.keys())
fixed_params() -> [str]

Returns the names of all fixed model parameters. Purely for brevity.

Returns:

Type Description
[str]

list of param names in order listed in prior_ranges

Source code in litmus/models.py
336
337
338
339
340
341
342
343
def fixed_params(self) -> [str]:
    """
    Returns the names of all fixed model parameters. Purely for brevity.
    :return: list of param names in order listed in prior_ranges
    """
    is_fixed = {key: np.ptp(self.prior_ranges[key]) == 0 for key in self.prior_ranges.keys()}
    out = [key for key in is_fixed.keys() if is_fixed[key]]
    return out
free_params() -> [str]

Returns the names of all free model parameters. Purely for brevity of code.

Returns:

Type Description
[str]

list of param names in order listed in prior_ranges

Source code in litmus/models.py
345
346
347
348
349
350
351
352
def free_params(self) -> [str]:
    """
    Returns the names of all free model parameters. Purely for brevity of code.
    :return: list of param names in order listed in prior_ranges
    """
    is_fixed = {key: np.ptp(self.prior_ranges[key]) == 0 for key in self.prior_ranges.keys()}
    out = [key for key in is_fixed.keys() if not is_fixed[key]]
    return out
dim() -> int

Quick and easy call for the number of model parameters.

Returns:

Type Description
int

number of model parameters as int

Source code in litmus/models.py
354
355
356
357
358
359
def dim(self) -> int:
    """
    Quick and easy call for the number of model parameters.
    :return: number of model parameters as int
    """
    return len(self.free_params())
log_density(params, data, use_vmap=False) -> _types.ArrayN

Returns the log density of the joint distribution at some constrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect

Source code in litmus/models.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def log_density(self, params, data, use_vmap=False) -> _types.ArrayN:
    """
    Returns the log density of the joint distribution at some constrained space position 'params' and conditioned
    on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of
    parameter values or a key dict of arrays of values.
    Returns as array of floats
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter_dict(params):
        N = _utils.dict_dim(params)[1]
        out = np.zeros(N)
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            out[i] = self._log_density_jit(p, data)
    else:
        out = np.array([self._log_density_jit(params, data)])

    return out
log_likelihood(params, data, use_vmap=False) -> _types.ArrayN

Returns the log likelihood at some constrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect

Source code in litmus/models.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
def log_likelihood(self, params, data, use_vmap=False) -> _types.ArrayN:
    """
    Returns the log likelihood at some constrained space position 'params' and conditioned
    on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of
    parameter values or a key dict of arrays of values.
    Returns as array of floats
    use_vmap currently not implemented with no side effect
    """
    if _utils.isiter_dict(params):
        N = _utils.dict_dim(params)[1]
        out = np.zeros(N)
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            out[i] = self._log_likelihood(p, data)
    else:
        out = self._log_likelihood(params, data)

    return out
log_density_uncon(params, data, use_vmap=False) -> _types.ArrayN

Returns the log density of the joint distribution at some unconstrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect

Source code in litmus/models.py
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def log_density_uncon(self, params, data, use_vmap=False) -> _types.ArrayN:
    """
    Returns the log density of the joint distribution at some unconstrained space position 'params' and conditioned
    on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of
    parameter values or a key dict of arrays of values.
    Returns as array of floats
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter_dict(params):
        N = _utils.dict_dim(params)[1]
        out = np.zeros(N)
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            out[i] = self._log_density_uncon_jit(p, data)
    else:
        out = self._log_density_uncon_jit(params, data)

    return out
log_prior(params, data=None, use_vmap=False) -> _types.ArrayN

Returns the log density of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect

Source code in litmus/models.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def log_prior(self, params, data=None, use_vmap=False) -> _types.ArrayN:
    """
    Returns the log density of the prior  at some constrained space position 'params'
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    Returns as array of floats
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter_dict(params):
        N = _utils.dict_dim(params)[1]
        out = np.zeros(N)
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            out[i] = self._log_prior_jit(p)
    else:
        out = self._log_prior_jit(params)

    return out
log_density_grad(params, data, use_vmap=False, keys=None) -> dict[str, float]

Returns the gradient of the log density of the joint distribution at some constrained space position 'params', conditionded on some 'data' matching the format of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect

Source code in litmus/models.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
def log_density_grad(self, params, data, use_vmap=False, keys=None) -> dict[str, float]:
    """
    Returns the gradient of the log density of the joint distribution at some constrained space position 'params',
    conditionded on some 'data' matching the format of the model's lc_to_data() output.
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    Returns as keyed dict of grads along each axsi or keyed dict of array of similar values
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter_dict(params):
        m, N = _utils.dict_dim(params)
        out = {key: np.zeros([N]) for key in params.keys()}
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            grads = self._log_density_grad(p, data)
            for key in params.keys():
                out[key][i] = grads[key]
    else:
        out = self._log_density_grad(params, data)

    return out
log_density_uncon_grad(params, data, use_vmap=False, keys=None, asdict=False) -> float

Returns the gradient of the log density of the joint distribution at some unconstrained space position 'params', conditionded on some 'data' matching the format of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect

Source code in litmus/models.py
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def log_density_uncon_grad(self, params, data, use_vmap=False, keys=None, asdict=False) -> float:
    """
    Returns the gradient of the log density of the joint distribution at some unconstrained space position 'params',
    conditionded on some 'data' matching the format of the model's lc_to_data() output.
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    Returns as keyed dict of grads along each axsi or keyed dict of array of similar values
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter_dict(params):
        m, N = _utils.dict_dim(params)
        out = {key: np.zeros([N]) for key in params.keys()}
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            grads = self._log_density_uncon_grad(p, data)
            for key in params.keys():
                out[key][i] = grads[key]
    else:
        out = self._log_density_uncon_grad(params, data)

    return out
log_prior_grad(params, data=None, use_vmap=False, keys=None) -> dict[str, float]

Returns the gradient of the log prior of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect

Source code in litmus/models.py
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def log_prior_grad(self, params, data=None, use_vmap=False, keys=None) -> dict[str, float]:
    """
    Returns the gradient of the log prior of the prior at some constrained space position 'params'
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    Returns as keyed dict of grads along each axsi or keyed dict of array of similar values
    use_vmap currently not implemented with no side effect
    """

    if _utils.isiter(params):
        m, N = _utils.dict_dim(params)
        out = np.zeros(N)
        for i in range(N):
            p = {key: params[key][i] for key in params.keys()}
            out[i, :] = self._log_prior_grad(p)
    else:
        out = self._log_prior_grad(params)

    return out
log_density_hess(params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM

Returns the hessian matrix of the log joint distribution at some constrained space position 'params', conditioned on some 'data' matching the output of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect

Source code in litmus/models.py
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def log_density_hess(self, params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM:
    """
    Returns the hessian matrix of the log joint distribution at some constrained space position 'params',
    conditioned on some 'data' matching the output of the model's lc_to_data() output.
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    parameter 'keys' is the params to slice and sort the hessian matrices.
    Returns in order / dimension: [num param sites, num keys, num keys]
    use_vmap currently not implemented with no side effect
    """

    if keys is None: keys = params.keys()

    if _utils.isiter_dict(params):
        m, N = _utils.dict_dim(params)
        m = len(keys)
        out = np.zeros([N, m, m])
        for i in range(N):
            p = {key: params[key][i] for key in keys}
            hess_eval = self._log_density_hess(p, data)
            for j, key1 in enumerate(keys):
                for k, key2 in enumerate(keys):
                    out[i, j, k] = hess_eval[key1][key2]
    else:
        m = len(keys)
        out = np.zeros([m, m])
        hess_eval = self._log_density_hess(params, data)
        for j, key1 in enumerate(keys):
            for k, key2 in enumerate(keys):
                out[j, k] = hess_eval[key1][key2]

    return out
log_density_uncon_hess(params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM

Returns the hessian matrix of the log joint distribution at some unconstrained space position 'params', conditioned on some 'data' matching the output of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect

Source code in litmus/models.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
def log_density_uncon_hess(self, params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM:
    """
    Returns the hessian matrix of the log joint distribution at some unconstrained space position 'params',
    conditioned on some 'data' matching the output of the model's lc_to_data() output.
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    parameter 'keys' is the params to slice and sort the hessian matrices.
    Returns in order / dimension: [num param sites, num keys, num keys]
    use_vmap currently not implemented with no side effect
    """

    if keys is None: keys = params.keys()

    if _utils.isiter_dict(params):
        m, N = _utils.dict_dim(params)
        m = len(keys)
        out = np.zeros([N, m, m])
        for i in range(N):
            p = {key: params[key][i] for key in keys}
            hess_eval = self._log_density_uncon_hess(p, data)
            for j, key1 in enumerate(keys):
                for k, key2 in enumerate(keys):
                    out[i, j, k] = hess_eval[key1][key2]
    else:
        m = len(keys)
        out = np.zeros([m, m])
        hess_eval = self._log_density_uncon_hess(params, data)
        for j, key1 in enumerate(keys):
            for k, key2 in enumerate(keys):
                out[j, k] = hess_eval[key1][key2]

    return out
log_prior_hess(params, data=None, use_vmap=False, keys=None) -> _types.ArrayNxMxM

Returns the hessian matrix of the log prior of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect

Source code in litmus/models.py
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
def log_prior_hess(self, params, data=None, use_vmap=False, keys=None) -> _types.ArrayNxMxM:
    """
    Returns the hessian matrix of the log prior of the prior at some constrained space position 'params'
    Params is either a keyed dict of parameter values or a key dict of arrays of values.
    parameter 'keys' is the params to slice and sort the hessian matrices.
    Returns in order / dimension: [num param sites, num keys, num keys]
    use_vmap currently not implemented with no side effect
    """

    if keys is None: keys = params.keys()

    if _utils.isiter_dict(params):
        m, N = _utils.dict_dim(params)
        m = len(keys)
        out = np.zeros([N, m, m])
        for i in range(N):
            p = {key: params[key][i] for key in keys}
            hess_eval = self._log_prior_hess(p)
            for j, key1 in enumerate(keys):
                for k, key2 in enumerate(keys):
                    out[i, j, k] = hess_eval[key1][key2]
    else:
        m = len(keys)
        out = np.zeros([m, m])
        hess_eval = self._log_prior_hess(params)
        for j, key1 in enumerate(keys):
            for k, key2 in enumerate(keys):
                out[j, k] = hess_eval[key1][key2]

    return out
scan(start_params, data, optim_params=None, use_vmap=False, optim_kwargs={}, precondition='diag') -> dict[str, float]

Beginning at position 'start_params', optimize parameters in 'optim_params' to find maximum. optim_kwargs will overwrite defaults and be passed directly to jaxopt.BFGS object

Currently using jaxopt with optim_kwargs: 'stepsize': 0.0, 'min_stepsize': 1E-5, 'increase_factor': 1.2, 'maxiter': 1024, 'linesearch': 'backtracking', 'verbose': False,

Parameters:

Name Type Description Default
start_params
required
data
required
optim_params
None
use_vmap
False
optim_kwargs
{}
precondition
'diag'

Returns:

Type Description
dict[str, float]
Source code in litmus/models.py
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
def scan(self, start_params, data, optim_params=None, use_vmap=False, optim_kwargs={}, precondition='diag') -> dict[
    str, float]:
    """
    Beginning at position 'start_params', optimize parameters in 'optim_params' to find maximum.
    optim_kwargs will overwrite defaults and be passed directly to jaxopt.BFGS object

    Currently using jaxopt with optim_kwargs:
        'stepsize': 0.0,
        'min_stepsize': 1E-5,
        'increase_factor': 1.2,
        'maxiter': 1024,
        'linesearch': 'backtracking',
        'verbose': False,

    :param start_params:
    :param data:
    :param optim_params:
    :param use_vmap:
    :param optim_kwargs:
    :param precondition:

    :returns:
    """

    optimizer_args = {
        'stepsize': 0.0,
        'min_stepsize': 1E-5,
        'increase_factor': 1.2,
        'maxiter': 256,
        'linesearch': 'backtracking',
        'verbose': False,
    }

    optimizer_args |= optim_kwargs

    # Convert to unconstrained domain
    start_params_uncon = self.to_uncon(start_params)

    if optim_params is None:
        optim_params = [name for name in self.paramnames() if
                        self.prior_ranges[name][0] != self.prior_ranges[name][1]
                        ]
    if len(optim_params) == 0: return start_params

    # Get all split into fixed and free params
    x0, y0 = _utils.dict_split(start_params_uncon, optim_params)
    x0 = _utils.dict_pack(x0)

    # -------------------------------------
    # Build preconditioning matrix
    H = self.log_density_uncon_hess(start_params_uncon, data, keys=optim_params)
    H *= -1
    if precondition == "cholesky":
        H = np.linalg.cholesky(np.linalg.inv(H))
        Hinv = np.linalg.inv(H)

    elif precondition == "eig":
        D, P = np.linalg.eig(H)
        if D.min() < 0:
            D[np.where(D < 0)[0].min()] = 1.0
        D, P = D.astype(float), P.astype(float)
        D **= -0.5

        H = np.dot(P, np.dot(np.diag(D), P.T))
        Hinv = np.dot(P, np.dot(np.diag(D ** -1), P.T))

    elif precondition == "half-eig":
        D, P = np.linalg.eig(H)
        if D.min() < 0:
            D[np.where(D < 0)[0].min()] = 1.0
        D, P = D.astype(float), P.astype(float)
        D **= -0.5

        H = np.dot(P, np.diag(D))
        Hinv = np.dot(np.diag(D ** -1), P.T)

    elif precondition == "diag":
        D = np.diag(H) ** -0.5
        D = np.where(D > 0, D, 1.0)
        H = np.diag(D)
        Hinv = np.diag(1 / D)

    else:
        H = np.eye(len(optim_params))
        Hinv = np.eye(len(optim_params))

    if self.debug:
        print("Scaling matrix:")
        print(H)
        print("Inverse Scaling matrix:")
        print(Hinv)

    """
    optfunc = pack_function(self._log_density_uncon,
                            packed_keys=optim_params,
                            fixed_values=y0,
                            invert=True,
                            H=H,
                            d0=start_params_uncon
                            )
    """

    def optfunc(X):
        Y = jnp.dot(H, X) + x0
        params = y0 | {key: Y[i] for i, key in enumerate(optim_params)}
        out = - self._log_density_uncon(params, data)
        return out

    X0 = np.zeros_like(x0)

    if self.debug:
        print("At initial uncon position", x0, "with keys", optim_params, "eval for optfunc is",
              optfunc(X0))

    assert not np.isinf(optfunc(np.zeros_like(x0))), "Something wrong with start positions in scan!"

    # =====================
    # Jaxopt Work

    # Build the optimizer
    solver = jaxopt.BFGS(fun=optfunc,
                         value_and_grad=False,
                         jit=True,
                         **optimizer_args
                         )

    # Debug safety check to see if something's breaking

    if self.debug:
        print("Creating and testing solver...")
        try:
            init_state = solver.init_state(X0)
            with _utils.suppress_stdout():  # TODO - Supressing of warnings, should be patched in newest jaxopt
                solver.update(params=X0, state=init_state)
            print("Jaxopt solver created and running fine")
        except:
            print("Something went wrong in when making the jaxopt optimizer. Double check your inputs.")

    with _utils.suppress_stdout():  # TODO - Supressing of warnings, should be patched in newest jaxopt
        sol, state = solver.run(init_params=X0)

    out = np.dot(H, sol) + x0

    # =====================
    # Cleanup and return
    if self.debug:
        print("At final uncon position", out, "with keys", optim_params, "eval for optfunc is",
              optfunc(sol)
              )

    # Unpack the results to a dict
    out = {key: out[i] for i, key in enumerate(optim_params)}
    out = out | y0  # Adjoin the fixed values

    # Convert back to constrained domain
    out = self.to_con(out)

    out = {key: float(val) for key, val in zip(out.keys(), out.values())}

    return out
laplace_log_evidence(params, data, integrate_axes=None, use_vmap=False, constrained=False) -> float

At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the model evidence

Parameters:

Name Type Description Default
params

Keyed dict with params in constrained / unconstrained parameter space

required
data

data to condition the model on

required
integrate_axes

Which axes to perform laplace approx for. If none, use all

None
use_vmap

DEPRECATED

False
constrained

If true, perform laplace approx in constrained domain. Default to false

False

Returns:

Type Description
float

laplace log evidence as float or array of floats

Source code in litmus/models.py
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
def laplace_log_evidence(self, params, data, integrate_axes=None, use_vmap=False, constrained=False) -> float:
    """
    At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the
    model evidence
    :param params: Keyed dict with params in constrained / unconstrained parameter space
    :param data: data to condition the model on
    :param integrate_axes: Which axes to perform laplace approx for. If none, use all
    :param use_vmap: DEPRECATED
    :param constrained: If true, perform laplace approx in constrained domain. Default to false
    :return: laplace log evidence as float or array of floats
    """

    if self.debug: print("-------------")
    if self.debug: print("Laplace Evidence eval")

    if self.debug: print("Constrained params are:")
    if self.debug: print(params)

    if integrate_axes is None:
        integrate_axes = self.paramnames()

    # Get 'height' and curvature of Gaussian
    if not constrained:
        uncon_params = self.to_uncon(params)

        if self.debug: print("Un-Constrained params are:")
        if self.debug: print(uncon_params)

        log_height = self.log_density_uncon(uncon_params, data)
        hess = self.log_density_uncon_hess(uncon_params, data, keys=integrate_axes)
    else:
        log_height = self.log_density(params, data)
        hess = self.log_density_hess(params, data, keys=integrate_axes)

    dethess = np.linalg.det(-hess)

    if self.debug: print("With determinant:")
    if self.debug: print(dethess)

    if self.debug: print("And log height: %.2f..." % log_height)

    D = len(integrate_axes)
    out = np.log(2 * np.pi) * (D / 2) - np.log(dethess) / 2 + log_height

    if self.debug: print("log-evidence is ~%.2f" % out)
    return out
laplace_log_info(params, data, integrate_axes=None, use_vmap=False, constrained=False)

At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the model information relative to the prior

Parameters:

Name Type Description Default
params

site(s) to evaluate info at in the constrained domain

required
data

data to condition the model on

required
integrate_axes

free axes to perform laplace integral over. If none, use all

None
use_vmap

DEPRECATED

False
constrained

If true perform laplace approx in the constrained domain

False

Returns:

Type Description

Laplace log info evaluated at params

Source code in litmus/models.py
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
def laplace_log_info(self, params, data, integrate_axes=None, use_vmap=False, constrained=False):
    """
    At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the
    model information relative to the prior
    :param params: site(s) to evaluate info at in the constrained domain
    :param data: data to condition the model on
    :param integrate_axes: free axes to perform laplace integral over. If none, use all
    :param use_vmap: DEPRECATED
    :param constrained: If true perform laplace approx in the constrained domain
    :return: Laplace log info evaluated at params
    """

    if integrate_axes is None:
        integrate_axes = self.paramnames()

    if not constrained:
        uncon_params = self.to_uncon(params)

        log_height = self.log_density_uncon(uncon_params, data)
        hess = self.log_density_uncon_hess(uncon_params, data)
    else:
        log_height = self.log_density(params, data)
        hess = self.log_density_hess(params, data)

    I = np.where([key in integrate_axes for key in self.paramnames()])[0]

    hess = hess[I, I]
    if len(I) > 1:
        dethess = np.linalg.det(hess)
    else:
        dethess = hess

    # todo - double check sign on the log term. Might be wrong
    # todo - add case check for non-uniform priors.
    D = len(integrate_axes)
    out = -(np.log(2 * np.pi) + 1) * (D / 2) - np.log(-dethess) / 2 + np.log(self.prior_volume)
    return out
opt_tol(params, data, integrate_axes=None, use_vmap=False, constrained=False)
Source code in litmus/models.py
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
def opt_tol(self, params, data, integrate_axes=None, use_vmap=False, constrained=False):
    if integrate_axes is None:
        integrate_axes = self.paramnames()

    # Get hessians and grads
    if not constrained:
        uncon_params = self.to_uncon(params)

        hess = self.log_density_uncon_hess(uncon_params, data, keys=integrate_axes)
        grad = self.log_density_uncon_grad(uncon_params, data, keys=integrate_axes)
    else:
        hess = self.log_density_hess(params, data, keys=integrate_axes)
        grad = self.log_density_grad(params, data, keys=integrate_axes)

    # todo - remove this when properly integrating keys argument into grad funcs
    I = np.where([key in integrate_axes for key in grad.keys()])[0]
    grad = np.array([float(x) for x in grad.values()])[I]
    grad, hess = -grad, -hess

    # ------------------------------------------------
    # Calculate tolerances
    if np.linalg.det(hess) <= 0 or np.isnan(hess).any():
        return np.inf

    try:
        Hinv = np.linalg.inv(hess)
        loss = np.dot(grad,
                      np.dot(
                          Hinv, grad
                      )
                      )
        return np.sqrt(abs(loss))

    except:
        return np.inf
prior_sample(num_samples: int = 1, seed: int = None) -> dict

Blind sampling from the prior without conditioning. Returns model parameters only

Parameters:

Name Type Description Default
num_samples int

Number of realizations to generate

1
seed int

seed for random generation

None

Returns:

Type Description
dict

keyed dict of parameters drawn from prior

Source code in litmus/models.py
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
def prior_sample(self, num_samples: int = 1, seed: int = None) -> dict:
    """
    Blind sampling from the prior without conditioning. Returns model parameters only
    :param num_samples: Number of realizations to generate
    :param seed: seed for random generation
    :return: keyed dict of parameters drawn from prior
    """

    if seed == None: seed = _utils.randint()

    pred = numpyro.infer.Predictive(self.prior,
                                    num_samples=num_samples,
                                    return_sites=self.paramnames()
                                    )

    params = pred(rng_key=jax.random.PRNGKey(seed))

    if num_samples == 1:
        params = {key: params[key][0] for key in params.keys()}
    return params
realization(data=None, num_samples: int = 1, seed: int = None)

Generates realizations of the observables by blindly sampling from the prior

Parameters:

Name Type Description Default
data

data to condition the lightcurve on

None
num_samples int

Number of realizations to generate

1
seed int

seed for random generation

None

Returns:

Type Description

keyed dict of the model observables

Source code in litmus/models.py
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
def realization(self, data=None, num_samples: int = 1, seed: int = None):
    """
    Generates realizations of the observables by blindly sampling from the prior
    :param data: data to condition the lightcurve on
    :param num_samples: Number of realizations to generate
    :param seed: seed for random generation
    :return: keyed dict of the model observables
    """
    if seed == None: seed = _utils.randint()

    pred = numpyro.infer.Predictive(self.model_function,
                                    num_samples=num_samples,
                                    return_sites=None
                                    )

    params = pred(rng_key=jax.random.PRNGKey(seed), data=data)
    return params
make_lightcurves(data, params: dict, Tpred, num_samples: int = 1) -> (lightcurve, lightcurve)

Returns lightcurves at time 'T' for 'parameters' conditioned on 'data' over num_samples draws from `params'

Parameters:

Name Type Description Default
data

Data to condition the model on

required
params dict

keyed dictionary of parameters

required
Tpred

Array of time values to predict the lightcurve at

required
num_samples int

number of samples to draw from params use in integration to get covar / mu

1

Returns:

Type Description
(lightcurve, lightcurve)

tuple of mean and covariance of LC's (loc_1, loc_2, covar_1, covar_2)

Source code in litmus/models.py
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
def make_lightcurves(self, data, params: dict, Tpred, num_samples: int = 1) -> (lightcurve, lightcurve):
    """
    Returns lightcurves at time 'T' for 'parameters' conditioned on 'data' over `num_samples` draws from `params'

    :param data: Data to condition the model on
    :param params: keyed dictionary of parameters
    :param Tpred: Array of time values to predict the lightcurve at
    :param num_samples: number of samples to draw from params use in integration to get covar / mu
    :return: tuple of mean and covariance of LC's (loc_1, loc_2, covar_1, covar_2)
    """

    len_params = _utils.dict_dim(params)[1]
    if num_samples > len_params:
        self.msg_err("Warning! Tried to call %i samples from only %i parameters in make_lightcurves" % (
            num_samples, len_params))

    loc_1 = np.zeros_like(Tpred)
    covar_1 = np.zeros([len(Tpred), len(Tpred)])
    loc_2, covar_2 = loc_1.copy(), covar_1.copy()

    if self._gen_lightcurve is stats_model._gen_lightcurve:
        self.msg_err("Warning, called make_lightcurves on a stats_model that doesn't have implementation")

    if not _utils.isiter_dict(params):
        loc_1, loc_2, covar_1, covar_2 = self.gen_lightcurve(data, params, jnp.array(Tpred))

    else:
        I = np.random.choice(range(len_params), num_samples, replace=True)
        loc_1_all = np.tile(loc_1, (num_samples, 1)) * 0
        loc_2_all = loc_1_all.copy()

        for k, p_sample in enumerate([_utils.dict_divide(params)[i] for i in I]):
            loc_1_i, loc_2_i, covar_1_i, covar_2_i = self.gen_lightcurve(data, p_sample, jnp.array(Tpred))
            covar_1 += covar_1_i
            covar_2 += covar_2_i
            loc_1_all[k, :] = loc_1_i
            loc_2_all[k, :] = loc_2_i
        loc_1 = np.mean(loc_1_all, axis=0)
        loc_2 = np.mean(loc_2_all, axis=0)
        covar_1 = covar_1 / num_samples + np.diag(np.var(loc_1_all, axis=0))
        covar_2 = covar_2 / num_samples + np.diag(np.var(loc_2_all, axis=0))

    err_1, err_2 = np.diag(covar_1) ** 0.5, np.diag(covar_2) ** 0.5

    outs = (lightcurve(Tpred, loc_1, err_1), lightcurve(Tpred, loc_2, err_2))

    return outs
params_inprior(params) -> bool

Utility to check if model params fall within the uniform prior bounds

Parameters:

Name Type Description Default
params

constrained space params to check validity of

required

Returns:

Type Description
bool

True if site falls within prior boundaries, false if not

Source code in litmus/models.py
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
def params_inprior(self, params) -> bool:
    """
    Utility to check if model params fall within the uniform prior bounds
    :param params: constrained space params to check validity of
    :return: True if site falls within prior boundaries, false if not
    """

    isgood = {key: True for key in params.keys()}
    for key in params.keys():
        if key in self.fixed_params():
            if np.any(params[key] != self.prior_ranges[key][0]):
                isgood[key] = False
            else:
                isgood[key] = True
        else:
            if np.any(
                    not ((params[key] >= self.prior_ranges[key][0]) and (params[key] < self.prior_ranges[key][1]))):
                isgood[key] = False
            else:
                isgood[key] = True
    return isgood
find_seed(data, guesses=None, fixed={}) -> (dict, float)

Find a good initial seed. Unless otherwise over-written, while blindly sample the prior and return the best fit.

Parameters:

Name Type Description Default
data

data to condition the model on

required
guesses

number of evals to use for finding the seed

None
fixed

keyed dict of parameters to be fixed instead of estimating a seed

{}

Returns:

Type Description
(dict, float)

tuple of dict of seed params and log density at this position

Source code in litmus/models.py
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
def find_seed(self, data, guesses=None, fixed={}) -> (dict, float):
    """
    Find a good initial seed. Unless otherwise over-written, while blindly sample the prior and return the best fit.
    :param data: data to condition the model on
    :param guesses: number of evals to use for finding the seed
    :param fixed: keyed dict of parameters to be fixed instead of estimating a seed
    :return: tuple of dict of seed params and log density at this position
    """

    if len(fixed.keys()) == len(self.paramnames()): return fixed, self.log_density(fixed, data)

    if guesses == None: guesses = 50 * 2 ** len(self.free_params())

    samples = self.prior_sample(num_samples=guesses)

    if fixed != {}: samples = _utils.dict_extend(samples | fixed)

    ll = self.log_density(samples, data)
    i = ll.argmax()

    out = _utils.dict_divide(samples)[i]
    return out, ll.max()

GP_simple(prior_ranges=None, **kwargs)

Bases: stats_model

An example of how to construct your own stats_model in the simplest form. Requirements are to: 1. Set a default prior range for all parameters used in model_function 2. Define a numpyro generative model model_function You can add / adjust methods as required, but these are the only main steps

Source code in litmus/models.py
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
def __init__(self, prior_ranges=None, **kwargs):
    self._default_prior_ranges = {
        'lag': _default_config['lag'],
        'logtau': _default_config['logtau'],
        'logamp': _default_config['logamp'],
        'rel_amp': _default_config['rel_amp'],
        'mean': _default_config['mean'],
        'rel_mean': _default_config['rel_mean'],
    }
    self._protected_keys = ['basekernel']
    super().__init__(prior_ranges=prior_ranges)

    self.basekernel: tinygp.kernels.quasisep = kwargs[
        'basekernel'] if 'basekernel' in kwargs.keys() else tinygp.kernels.quasisep.Exp
    """The gaussian kernel"""
basekernel: tinygp.kernels.quasisep = kwargs['basekernel'] if 'basekernel' in kwargs.keys() else tinygp.kernels.quasisep.Exp instance-attribute

The gaussian kernel

prior() -> list[float, float, float, float, float, float]
Source code in litmus/models.py
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
def prior(self) -> list[float, float, float, float, float, float]:
    # Sample distributions
    lag = quickprior(self, 'lag')

    logtau = quickprior(self, 'logtau')
    logamp = quickprior(self, 'logamp')

    rel_amp = quickprior(self, 'rel_amp')
    mean = quickprior(self, 'mean')
    rel_mean = quickprior(self, 'rel_mean')

    return lag, logtau, logamp, rel_amp, mean, rel_mean
model_function(data) -> None
Source code in litmus/models.py
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
def model_function(self, data) -> None:
    lag, logtau, logamp, rel_amp, mean, rel_mean = self.prior()

    T, Y, E, bands = [data[key] for key in ['T', 'Y', 'E', 'bands']]

    # Conversions to gp-friendly form
    amp, tau = jnp.exp(logamp), jnp.exp(logtau)

    diag = jnp.square(E)

    delays = jnp.array([0, lag])
    amps = jnp.array([amp, rel_amp * amp])
    means = jnp.array([mean, mean + rel_mean])

    T_delayed = T - delays[bands]
    I = T_delayed.argsort()

    # Build and sample GP

    gp = gpw.build_gp(T_delayed[I], Y[I], diag[I], bands[I], tau, amps, means, basekernel=self.basekernel)
    numpyro.sample("Y", gp.numpyro_dist(), obs=Y[I])
find_seed(data, guesses=None, fixed={}) -> (float, dict[str, float])
Source code in litmus/models.py
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
def find_seed(self, data, guesses=None, fixed={}) -> (float, dict[str, float]):

    # -------------------------
    # Setup
    T, Y, E, bands = [data[key] for key in ['T', 'Y', 'E', 'bands']]

    T1, Y1, E1 = T[bands == 0], Y[bands == 0], E[bands == 0]
    T2, Y2, E2 = T[bands == 1], Y[bands == 1], E[bands == 1]

    # If not specified, use roughly 4 per epoch of main lightcurve
    if guesses is None: guesses = int(np.array(self.prior_ranges['lag']).ptp() / np.median(np.diff(T1))) * 4

    check_fixed = self.params_inprior(fixed)
    if False in check_fixed:
        print("Warning! Tried to fix seed params at values that lie outside of prior range:")
        for [key, val] in check_fixed.items():
            if val == False: print('\t%s' % key)
        print("This may be overwritten")

    # -------------------------
    # Estimate Correlation Timescale
    if 'logtau' not in fixed.keys():
        from litmus.ICCF_working import correlfunc_jax_vmapped
        approx_season = np.diff(T1).max()

        if approx_season > np.median(np.diff(T1)) * 5:
            span = approx_season
        else:
            span = np.ptp(T1) * 0.1

        autolags = jnp.linspace(-span, span, 1024)
        autocorrel = correlfunc_jax_vmapped(autolags, T1, Y1, T1, Y1, 1024)

        autolags, autocorrel = np.array(autolags), np.array(autocorrel)

        # Trim to positive values and take a linear regression
        autolags = autolags[autocorrel > 0]
        autocorrel = autocorrel[autocorrel > 0]
        autocorrel = np.log(autocorrel)
        autocorrel[autolags < 0] *= -1

        autolags -= autolags.mean(),
        autocorrel -= autocorrel.mean()

        tau = (autolags * autolags).sum() / (autolags * autocorrel).sum()
        tau = abs(tau)
        # tau *= np.exp(1)
    else:
        tau = 1

    # -------------------------
    # Estimate mean & variances
    Y1bar, Y2bar = np.average(Y1, weights=E1 ** -2), np.average(Y2, weights=E2 ** -2)
    Y1var, Y2var = np.average((Y1 - Y1bar) ** 2, weights=E1 ** -2), np.average((Y2 - Y2bar) ** 2, weights=E2 ** -2)

    # -------------------------

    out = {
        'lag': 0.0,
        'logtau': np.log(tau),
        'logamp': np.log(Y1var) / 2,
        'rel_amp': np.sqrt(Y2var / Y1var),
        'mean': Y1bar,
        'rel_mean': Y2bar - Y1bar,
    }

    out |= fixed

    # -------------------------
    # Where estimates are outside prior range, round down
    isgood = self.params_inprior(out)
    r = 0.01
    isgood['lag'] = True
    for key in out.keys():
        if not isgood[key]:
            if out[key] < self.prior_ranges[key][0]:
                out[key] = self.prior_ranges[key][0] + r * np.ptp(self.prior_ranges[key])
            else:
                out[key] = self.prior_ranges[key][1] - r * np.ptp(self.prior_ranges[key])

    # -------------------------
    # Estimate lag with a sweep if not in fixed
    if 'lag' not in fixed.keys():
        lag_fits = np.linspace(*self.prior_ranges['lag'], guesses, endpoint=False)
        out |= {'lag': lag_fits}
    else:
        out |= {'lag': fixed['lag']}

    # -------------------------
    # Get log likelihoods and return best value
    out = _utils.dict_extend(out)

    lls = self.log_density(params=out, data=data)
    if _utils.dict_dim(out)[1] > 1:
        i = lls.argmax()
        ll_out = lls[i]
        out = {key: out[key][i] for key in out.keys()}
        if self.debug:
            print("In find seed, sample no %i is best /w LL %.2f at lag %.2f" % (i, ll_out, out['lag']))
    else:
        ll_out = float(lls)

    return out, ll_out

GP_simple_null()

Bases: GP_simple

A variant of GP_simple for uncoupled gaussian processes, equivalent to lag->infty in GP_simple. Used for null hypothesis testing through model comparison.

Source code in litmus/models.py
1409
1410
1411
1412
1413
def __init__(self):
    self._default_prior_ranges = {
        'lag': [0.0, 0.0]
    }
    super().__init__()
lc_to_data(lc_1: lightcurve, lc_2: lightcurve) -> dict
Source code in litmus/models.py
1415
1416
1417
1418
1419
1420
1421
1422
1423
def lc_to_data(self, lc_1: lightcurve, lc_2: lightcurve) -> dict:
    return super().lc_to_data(lc_1, lc_2) | {
        'T1': lc_1.T,
        'Y1': lc_1.Y,
        'E1': lc_1.E,
        'T2': lc_2.T,
        'Y2': lc_2.Y,
        'E2': lc_2.E,
    }
model_function(data) -> None
Source code in litmus/models.py
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
def model_function(self, data) -> None:
    lag, logtau, logamp, rel_amp, mean, rel_mean = self.prior()

    T1, Y1, E1 = [data[key] for key in ['T1', 'Y1', 'E1']]
    T2, Y2, E2 = [data[key] for key in ['T2', 'Y2', 'E2']]

    # Conversions to gp-friendly form
    amp, tau = jnp.exp(logamp), jnp.exp(logtau)

    diag1, diag2 = jnp.square(E1), jnp.square(E2)

    # amps = jnp.array([amp, rel_amp * amp])
    # means = jnp.array([mean, mean + rel_mean])
    Y1 -= mean
    Y2 -= (mean + rel_mean)

    # Build and sample GP
    kernel1 = tinygp.kernels.quasisep.Exp(scale=tau, sigma=amp)
    kernel2 = tinygp.kernels.quasisep.Exp(scale=tau, sigma=amp * rel_amp)

    gp1 = GaussianProcess(kernel1, T1, diag=diag1)
    gp2 = GaussianProcess(kernel2, T2, diag=diag2)
    numpyro.sample("Y1", gp1.numpyro_dist(), obs=Y1)
    numpyro.sample("Y2", gp2.numpyro_dist(), obs=Y2)

whitenoise_null()

Bases: GP_simple_null

Source code in litmus/models.py
1409
1410
1411
1412
1413
def __init__(self):
    self._default_prior_ranges = {
        'lag': [0.0, 0.0]
    }
    super().__init__()
model_function(data) -> None
Source code in litmus/models.py
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
def model_function(self, data) -> None:
    lag, logtau, logamp, rel_amp, mean, rel_mean = self.prior()

    T1, Y1, E1 = [data[key] for key in ['T1', 'Y1', 'E1']]
    T2, Y2, E2 = [data[key] for key in ['T2', 'Y2', 'E2']]

    # Conversions to gp-friendly form
    amp, tau = jnp.exp(logamp), jnp.exp(logtau)

    diag1, diag2 = jnp.square(E1), jnp.square(E2)

    # amps = jnp.array([amp, rel_amp * amp])
    # means = jnp.array([mean, mean + rel_mean])
    Y1 -= mean

    # Build and sample GP
    kernel1 = tinygp.kernels.quasisep.Exp(scale=tau, sigma=amp)

    gp1 = GaussianProcess(kernel1, T1, diag=diag1)
    numpyro.sample("Y1", gp1.numpyro_dist(), obs=Y1)

    with numpyro.plate("whitenoise", len(Y2)):
        numpyro.sample('Y2',
                       dist.Normal(mean + rel_mean, jnp.sqrt((amp * rel_amp) ** 2 + E2 ** 2)),
                       obs=Y2)

GP_simple_normalprior()

Bases: GP_simple

Source code in litmus/models.py
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
def __init__(self):
    self._default_prior_ranges = {
        'lag': [1.0, 1000.0]
    }
    self._protected_keys = ['mu_lagpred', 'sig_lagpred']
    super().__init__()

    # Default values for hbeta AGN @ ~44 dex lum, from R-L relations
    self.mu_lagpred = 1.44 * np.log(10)  # ~28 days, from McDougall et al 2025a
    self.sig_lagpred = np.log(10) * 0.24  # ~1.75 dex, from McDougall et al 2025a
mu_lagpred = 1.44 * np.log(10) instance-attribute
sig_lagpred = np.log(10) * 0.24 instance-attribute
prior() -> (float, float, float, float, float, float)
Source code in litmus/models.py
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
def prior(self) -> (float, float, float, float, float, float):

    tform = numpyro.distributions.transforms.ExpTransform()
    tformed_dist = numpyro.distributions.TransformedDistribution(
        dist.TruncatedNormal(self.mu_lagpred, self.sig_lagpred, low=jnp.log(self.prior_ranges['lag'][0]),
                             high=jnp.log(self.prior_ranges['lag'][1])), [tform, ]
    )
    lag = numpyro.sample('lag', tformed_dist)
    masked_model = numpyro.handlers.substitute(super().prior, {'lag': lag})
    with numpyro.handlers.block(hide=['lag']):
        _, logtau, logamp, rel_amp, mean, rel_mean = masked_model()
    return lag, logtau, logamp, rel_amp, mean, rel_mean
uncon_grad_lag(params) -> float
Source code in litmus/models.py
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
def uncon_grad_lag(self, params) -> float:

    from numpyro.infer.util import transform_fn

    if 'lag' not in self.paramnames(): return 0
    if np.ptp(self.prior_ranges['lag']) == 0: return 0

    tform = numpyro.distributions.transforms.ExpTransform()
    lagdist = numpyro.distributions.TransformedDistribution(
        dist.TruncatedNormal(self.mu_lagpred, self.sig_lagpred, low=jnp.log(self.prior_ranges['lag'][0]),
                             high=jnp.log(self.prior_ranges['lag'][1])), [tform, ]
    )
    lag_con = params['lag']

    transforms = {"lag": numpyro.distributions.biject_to(lagdist.support)}

    def tform(x):
        out = transform_fn(transforms, params | {'lag': x}, invert=True)['lag']
        return out

    tform = jax.grad(tform)
    out = np.log(abs(tform(lag_con)))
    return out

quickprior(targ, key)

Source code in litmus/models.py
45
46
47
48
49
def quickprior(targ, key):
    p = targ.prior_ranges[key]
    distrib = dist.Uniform(float(p[0]), float(p[1])) if p[0] != p[1] else dist.Delta(float(p[0]))
    out = numpyro.sample(key, distrib)
    return out