litmus.models
Contains NumPyro generative models.
HM 24
stats_model(prior_ranges=None, out_stream=sys.stdout, err_stream=sys.stderr, verbose=True, debug=True)
Bases: logger
Base class for bayesian generative models. Includes a series of utilities for evaluating likelihoods, gradients etc., as well as various
On init, takes dict `prior_ranges' of the uniform boundaries of the parameter priors, or a single (float/int) value if the value is fixed, e.g. stats_model(prior_ranges = { 'lag': [0, 1000], 'amp': 1.0 }) Also takes logging arg from the litmus.logging.logger object.
Source code in litmus/models.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
|
prior_ranges: dict[str, list[float, float]] = {} | self._default_prior_ranges
instance-attribute
Keyed dict like {key: [max,min] } of bounds for parameter uniform priors
prior_volume = 1.0
instance-attribute
Volume of the prior, i.e. prod(max_i-min_i) for in in params
name = type(self).__name__
instance-attribute
Name of the model for print strings
set_priors(prior_ranges: dict) -> None
Sets the stats model prior ranges for uniform priors. Does some sanity checking to avoid negative priors e.g. stats_model(prior_ranges = { 'lag': [0, 1000], 'amp': 1.0 })
Source code in litmus/models.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
prior() -> [float]
A NumPyro callable prior.
Returns:
Type | Description |
---|---|
[float]
|
Values of the parameters as sampled from the prior |
Source code in litmus/models.py
220 221 222 223 224 225 226 |
|
model_function(data)
A NumPyro callable function. Does not return
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Data to condition the model on |
required |
Source code in litmus/models.py
228 229 230 231 232 233 |
|
lc_to_data(lc_1: lightcurve, lc_2: lightcurve) -> dict
Converts light-curves into the format required for the model. For most models this will return as some sort of sorted dictionary
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lc_1
|
lightcurve
|
First lightcurve object |
required |
lc_2
|
lightcurve
|
Second lightcurve object |
required |
Returns:
Type | Description |
---|---|
dict
|
Varies from model to model, by default will be a keyed dict: {'T': Time values of observations series, 'Y': Signal strength values of observations series, 'E': Uncertainty values of values in Y, 'bands': int array identifying which lightcurve (0,1) that the observations belong to } |
Source code in litmus/models.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
to_uncon(params) -> dict[str, float]
Converts model parametes from "real" constrained domain values into HMC friendly unconstrained values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
keyed dict of parameters in constrained domain |
required |
Returns:
Type | Description |
---|---|
dict[str, float]
|
keyed dict of parameters in unconstrained domain |
Source code in litmus/models.py
268 269 270 271 272 273 274 275 276 |
|
to_con(params) -> dict[str, float]
Converts model parametes back into "real" constrained domain values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
keyed dict of parameters in unconstrained domain |
required |
Returns:
Type | Description |
---|---|
dict[str, float]
|
keyed dict of parameters in constrained domain |
Source code in litmus/models.py
278 279 280 281 282 283 284 285 |
|
uncon_grad(params) -> float
Evaluates the log of det(Jac) by evaluating pi(x) and pi'(x'). Used for correcting integral elements between constrained and unconstrained space
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Model parameters in constrained domain |
required |
Returns:
Type | Description |
---|---|
float
|
float of det(Jacobian) |
Source code in litmus/models.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
uncon_grad_lag(params) -> float
Returns the log-jacobian correction for the constrained / unconstrained correction for the lag parameter Assumes a uniform distribution for the lag prior
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Model parameters in constrained domain |
required |
Returns:
Type | Description |
---|---|
float
|
float of det(Jacobian) for lag_uncon <-> lag_con |
Source code in litmus/models.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
paramnames() -> [str]
Returns the names of all model parameters. Purely for brevity of code.
Returns:
Type | Description |
---|---|
[str]
|
list of param names in order listed in prior_ranges |
Source code in litmus/models.py
329 330 331 332 333 334 |
|
fixed_params() -> [str]
Returns the names of all fixed model parameters. Purely for brevity.
Returns:
Type | Description |
---|---|
[str]
|
list of param names in order listed in prior_ranges |
Source code in litmus/models.py
336 337 338 339 340 341 342 343 |
|
free_params() -> [str]
Returns the names of all free model parameters. Purely for brevity of code.
Returns:
Type | Description |
---|---|
[str]
|
list of param names in order listed in prior_ranges |
Source code in litmus/models.py
345 346 347 348 349 350 351 352 |
|
dim() -> int
Quick and easy call for the number of model parameters.
Returns:
Type | Description |
---|---|
int
|
number of model parameters as int |
Source code in litmus/models.py
354 355 356 357 358 359 |
|
log_density(params, data, use_vmap=False) -> _types.ArrayN
Returns the log density of the joint distribution at some constrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect
Source code in litmus/models.py
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
|
log_likelihood(params, data, use_vmap=False) -> _types.ArrayN
Returns the log likelihood at some constrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect
Source code in litmus/models.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
log_density_uncon(params, data, use_vmap=False) -> _types.ArrayN
Returns the log density of the joint distribution at some unconstrained space position 'params' and conditioned on some 'data'. data must match the output of the model's lc_to_data(), and params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect
Source code in litmus/models.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
|
log_prior(params, data=None, use_vmap=False) -> _types.ArrayN
Returns the log density of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as array of floats use_vmap currently not implemented with no side effect
Source code in litmus/models.py
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
|
log_density_grad(params, data, use_vmap=False, keys=None) -> dict[str, float]
Returns the gradient of the log density of the joint distribution at some constrained space position 'params', conditionded on some 'data' matching the format of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect
Source code in litmus/models.py
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
|
log_density_uncon_grad(params, data, use_vmap=False, keys=None, asdict=False) -> float
Returns the gradient of the log density of the joint distribution at some unconstrained space position 'params', conditionded on some 'data' matching the format of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect
Source code in litmus/models.py
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
|
log_prior_grad(params, data=None, use_vmap=False, keys=None) -> dict[str, float]
Returns the gradient of the log prior of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. Returns as keyed dict of grads along each axsi or keyed dict of array of similar values use_vmap currently not implemented with no side effect
Source code in litmus/models.py
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
|
log_density_hess(params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM
Returns the hessian matrix of the log joint distribution at some constrained space position 'params', conditioned on some 'data' matching the output of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect
Source code in litmus/models.py
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
|
log_density_uncon_hess(params, data, use_vmap=False, keys=None) -> _types.ArrayNxMxM
Returns the hessian matrix of the log joint distribution at some unconstrained space position 'params', conditioned on some 'data' matching the output of the model's lc_to_data() output. Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect
Source code in litmus/models.py
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
log_prior_hess(params, data=None, use_vmap=False, keys=None) -> _types.ArrayNxMxM
Returns the hessian matrix of the log prior of the prior at some constrained space position 'params' Params is either a keyed dict of parameter values or a key dict of arrays of values. parameter 'keys' is the params to slice and sort the hessian matrices. Returns in order / dimension: [num param sites, num keys, num keys] use_vmap currently not implemented with no side effect
Source code in litmus/models.py
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 |
|
scan(start_params, data, optim_params=None, use_vmap=False, optim_kwargs={}, precondition='diag') -> dict[str, float]
Beginning at position 'start_params', optimize parameters in 'optim_params' to find maximum. optim_kwargs will overwrite defaults and be passed directly to jaxopt.BFGS object
Currently using jaxopt with optim_kwargs: 'stepsize': 0.0, 'min_stepsize': 1E-5, 'increase_factor': 1.2, 'maxiter': 1024, 'linesearch': 'backtracking', 'verbose': False,
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start_params
|
|
required | |
data
|
|
required | |
optim_params
|
|
None
|
|
use_vmap
|
|
False
|
|
optim_kwargs
|
|
{}
|
|
precondition
|
|
'diag'
|
Returns:
Type | Description |
---|---|
dict[str, float]
|
|
Source code in litmus/models.py
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 |
|
laplace_log_evidence(params, data, integrate_axes=None, use_vmap=False, constrained=False) -> float
At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the model evidence
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
Keyed dict with params in constrained / unconstrained parameter space |
required | |
data
|
data to condition the model on |
required | |
integrate_axes
|
Which axes to perform laplace approx for. If none, use all |
None
|
|
use_vmap
|
DEPRECATED |
False
|
|
constrained
|
If true, perform laplace approx in constrained domain. Default to false |
False
|
Returns:
Type | Description |
---|---|
float
|
laplace log evidence as float or array of floats |
Source code in litmus/models.py
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 |
|
laplace_log_info(params, data, integrate_axes=None, use_vmap=False, constrained=False)
At some point 'params' in parameter space, gets the hessian in unconstrained space and uses to estimate the model information relative to the prior
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
site(s) to evaluate info at in the constrained domain |
required | |
data
|
data to condition the model on |
required | |
integrate_axes
|
free axes to perform laplace integral over. If none, use all |
None
|
|
use_vmap
|
DEPRECATED |
False
|
|
constrained
|
If true perform laplace approx in the constrained domain |
False
|
Returns:
Type | Description |
---|---|
Laplace log info evaluated at params |
Source code in litmus/models.py
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
|
opt_tol(params, data, integrate_axes=None, use_vmap=False, constrained=False)
Source code in litmus/models.py
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 |
|
prior_sample(num_samples: int = 1, seed: int = None) -> dict
Blind sampling from the prior without conditioning. Returns model parameters only
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_samples
|
int
|
Number of realizations to generate |
1
|
seed
|
int
|
seed for random generation |
None
|
Returns:
Type | Description |
---|---|
dict
|
keyed dict of parameters drawn from prior |
Source code in litmus/models.py
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 |
|
realization(data=None, num_samples: int = 1, seed: int = None)
Generates realizations of the observables by blindly sampling from the prior
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
data to condition the lightcurve on |
None
|
|
num_samples
|
int
|
Number of realizations to generate |
1
|
seed
|
int
|
seed for random generation |
None
|
Returns:
Type | Description |
---|---|
keyed dict of the model observables |
Source code in litmus/models.py
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 |
|
make_lightcurves(data, params: dict, Tpred, num_samples: int = 1) -> (lightcurve, lightcurve)
Returns lightcurves at time 'T' for 'parameters' conditioned on 'data' over num_samples
draws from `params'
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Data to condition the model on |
required | |
params
|
dict
|
keyed dictionary of parameters |
required |
Tpred
|
Array of time values to predict the lightcurve at |
required | |
num_samples
|
int
|
number of samples to draw from params use in integration to get covar / mu |
1
|
Returns:
Type | Description |
---|---|
(lightcurve, lightcurve)
|
tuple of mean and covariance of LC's (loc_1, loc_2, covar_1, covar_2) |
Source code in litmus/models.py
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 |
|
params_inprior(params) -> bool
Utility to check if model params fall within the uniform prior bounds
Parameters:
Name | Type | Description | Default |
---|---|---|---|
params
|
constrained space params to check validity of |
required |
Returns:
Type | Description |
---|---|
bool
|
True if site falls within prior boundaries, false if not |
Source code in litmus/models.py
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 |
|
find_seed(data, guesses=None, fixed={}) -> (dict, float)
Find a good initial seed. Unless otherwise over-written, while blindly sample the prior and return the best fit.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
data to condition the model on |
required | |
guesses
|
number of evals to use for finding the seed |
None
|
|
fixed
|
keyed dict of parameters to be fixed instead of estimating a seed |
{}
|
Returns:
Type | Description |
---|---|
(dict, float)
|
tuple of dict of seed params and log density at this position |
Source code in litmus/models.py
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 |
|
GP_simple(prior_ranges=None, **kwargs)
Bases: stats_model
An example of how to construct your own stats_model in the simplest form. Requirements are to: 1. Set a default prior range for all parameters used in model_function 2. Define a numpyro generative model model_function You can add / adjust methods as required, but these are the only main steps
Source code in litmus/models.py
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 |
|
basekernel: tinygp.kernels.quasisep = kwargs['basekernel'] if 'basekernel' in kwargs.keys() else tinygp.kernels.quasisep.Exp
instance-attribute
The gaussian kernel
prior() -> list[float, float, float, float, float, float]
Source code in litmus/models.py
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
|
model_function(data) -> None
Source code in litmus/models.py
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 |
|
find_seed(data, guesses=None, fixed={}) -> (float, dict[str, float])
Source code in litmus/models.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 |
|
GP_simple_null()
Bases: GP_simple
A variant of GP_simple for uncoupled gaussian processes, equivalent to lag->infty in GP_simple. Used for null hypothesis testing through model comparison.
Source code in litmus/models.py
1409 1410 1411 1412 1413 |
|
lc_to_data(lc_1: lightcurve, lc_2: lightcurve) -> dict
Source code in litmus/models.py
1415 1416 1417 1418 1419 1420 1421 1422 1423 |
|
model_function(data) -> None
Source code in litmus/models.py
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 |
|
whitenoise_null()
Bases: GP_simple_null
Source code in litmus/models.py
1409 1410 1411 1412 1413 |
|
model_function(data) -> None
Source code in litmus/models.py
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 |
|
GP_simple_normalprior()
Bases: GP_simple
Source code in litmus/models.py
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 |
|
mu_lagpred = 1.44 * np.log(10)
instance-attribute
sig_lagpred = np.log(10) * 0.24
instance-attribute
prior() -> (float, float, float, float, float, float)
Source code in litmus/models.py
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 |
|
uncon_grad_lag(params) -> float
Source code in litmus/models.py
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 |
|
quickprior(targ, key)
Source code in litmus/models.py
45 46 47 48 49 |
|