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Abstract

At each galaxy’s core is a supermassive black hole, some of which are extremely luminous
‘active galactic nuclei’ (AGN) that are visible out to high redshift. There is an ongoing effort
to measure the central black hole mass in such AGN, with the main technique for doing so
being ‘reverberation mapping’ (RM), in which we measure the time delay between central
broadband optical emission from the accretion disk and the resulting spectral line emission
from orbiting gas clouds, allowing us to infer the geometry of the AGN.

Many-object RM campaigns are limited by the problem of ‘aliasing’, in which seasonal
gaps in our observations yield high uncertainties and misleading results in lag recovery. Alias-
ing leads to problems both statistical and numerical, and severely impacts the measurements
in RM. In this thesis, I investigate the numerical challenges associated with aliasing, focusing
specifically on the failure modes of the leading RM software package JAVELIN. I demonstrate
that JAVELIN is an unsuitable tool for the challenges posed by aliasing, and present a new
alternative program that I have named LITMUS, which makes use of modern statistical tech-
niques to overcome these issues. I apply this new program to simulated AGN signals and
demonstrate that it provides significantly improved results as compared to JAVELIN, more ac-
curately recovering underlying likelihoods by resolving significant numerical artefacts present
in existing software.

I also investigate the utility of performing RM for multiple lags simultaneously for those
sources in which more than one reverberating emission line is visible. I apply LITMUS to
the 92 OzDES sources with multiple lines, contrasting their results for independent and
simultaneous lag recovery, and compare to existing recoveries in the literature. I find that,
though LITMUS outperforms JAVELIN in recovering the true likelihood distribution of lag
parameters, the existing tools for identifying and removing false positives do not work when
used in conjunction with our new program. Without appropriate measures for quality cuts,
the improved accuracy of LITMUS does not overcome the inherent noise of the aliased signals.
As a result, our sample is severely contaminated by aliases and we are unable to identify any
new trends in our limited subset of the OzDES sample. Further work is needed to develop
a robust method for false-positive identification before LITMUS can be applied at scale to
high noise data sets. Where my results are able to be compared to existing recoveries, I
them to be in good agreement. In application to simulated and real data, I find that fitting
of multiple lines yields no significant improvement in results for the OzDES sample.

More work is needed to characterize the noise and false positive rate of LITMUS when
applied to real data. However, this new program solves critical numerical issues present in
JAVELIN, and has a demonstrably improved accuracy in recovering lag likelihood distribu-
tions. With further statistical developments, LITMUS presents the opportunity to significantly
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improve the number and accuracy of reverberation mapping sources in high-redshift surveys.
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1
Introduction

It is a now well established fact that each galaxy is host to a supermassive black hole
(SMBH) at is core, a dense galactic nucleus orders of magnitude more massive than the
familiar stellar-mass black holes. A subset of these objects have absorb in-falling matter to
create a super-luminous accretion disk, with these ‘Active Galactic Nuclei (AGN)’ acting as
the origin of many seemingly disparate classes of in-sky objects. AGN are bright enough
to be seen out to cosmological distances, providing a probe into galaxy evolution and the
as-of-yet unresolved question of SMBH formation deep into the cosmological past. If viewed
at the correct angle, AGN present as ‘Seyfert 1 galaxies’, in which we can view both the
accretion disk ‘engine’ and the fast-orbiting dust cloud of the ‘Broad Line Region’ (BLR).
The BLR is in a tightly bound, high speed orbit about the SMBH, where it absorbs the
intense radiation of the engine and re-emits it as Doppler broadened emission lines. This
broadening allows us to infer the kinematics of the BLR, which in turn provides an estimate
of the black hole mass. However, such measurement requires that we also know the orbital
radius of the BLR, which is far too small to resolve visually.

A solution exists in the form of ‘reverberation mapping’ (RM), a novel technique in which
a we use the characteristic delay between the photometric observations of the continuum-light
from the engine and the spectroscopic observations of the ‘echo’ it produces from the BLR
to infer the geometric scale of the system. RM allows us to substitute temporal resolution
in place of spatial resolution, and as such provides the primary means of constraining black
hole masses for galaxies beyond redshifts of z = 0.1[3].

1



2 Introduction

Figure 1.1: Standard model of AGN geometry, adapted from [40].

RM necessarily requires long observation windows of both photometric and spectroscopic
measurements of AGN, and the last decade has seen efforts to extend the total number of
SMBH mass estimates through multi-year, multi-object observation campaigns. In this
thesis, I focus on the work of the Australian Dark Energy Survey (OzDES), which provides
ground-based spectroscopy for 735 AGN measured photometrically by the Dark Energy
Survey (DES).

Such multi-year surveys are characterized by half-yearly seasonal gaps in our measure-
ments owing to the low in-sky brightness of AGN. These gaps lead to the problem of ‘aliasing’,
a collection of statistical and numerical problems that gives rise to high uncertainty and er-
roneous results in reverberation mapping. There has been much past work investigating the
problems of aliasing, seeking to properly characterise and mitigate its impacts, but little
attention has been paid to suitability of the numerical tools in used RM to the problem of
aliased signals.

The statistical techniques for performing RM are well established, with the most com-
plete approach being to model the AGN light curve as a ‘damped random walk’, a highly
parameterized stochastic model. This approach is employed by the program JAVELIN, which
employs Markov-Chain Monte Carlo methods to recover lags via this stochastic modelling
and has emerged as the standard tool for AGN RM. Despite its broad usage, JAVELIN is
known to encounter significant issues when employed against AGN subject to aliasing [32].
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In this thesis, I investigate the failure modes of JAVELIN, both their causes and impacts,
and propose a new method leveraging modern numerical techniques that is robust against
the obstacles posed by aliasing. To employ this new method, I present LITMUS: a new
reverberation mapping program and alternative to JAVELIN. This new program makes use
of the JAX framework for ‘just-in-time’ compilation to achieve speed on par with JAVELIN,
and employs modern highly efficient MCMC techniques made possible by JAX’s ‘autodiff’
functionality.

I also employ LITMUS to test another novel technique in reverberation mapping: the
simultaneous recovery of lags for multiple emission lines within a single source. The estab-
lished technique is to fit only one lag at a time even in cases where multiple emission lines
are visible, and such ‘multi-line’ fitting has not yet been employed on large scale surveys
like OzDES. To test the impact of this multi-line fitting, I examine the 92 sources in the
OzDES sample at redshifts which allow multiple reverberating emission to be seen. For these
sources, I perform lag recovery for the ‘simultaneous’ fitting of lags and compare to the typ-
ical ‘independent’ fitting, and contrast the findings for both with previously established lags
for this same sample.

1.1 OzDES: The Australian Dark Energy Survey

In this thesis, I aim my attention at AGN observed by the Australian Dark Energy Sur-
vey (OzDES), a multi-year, multi-object reverberation mapping campaign that provides
spectroscopic measurements for these sources complimentary to the photometric measure-
ments of the Dark Energy Survey (DES). OzDES tracks 793 sources in the redshift range
z ∈ [0.1, 3.8] over a 6-year period, with spectroscopy spanning the optical wavelength range
of λ ∈ [3750Å, 8900Å].

Photometric measurements of the AGN continuum are sourced from the Dark Energy
Camera (DECam), a tool mounted to the 4 meter Victor M. Blanco telescope at the Cerro
Tololo Inter-American Observatory in northern central Chile. These measurements provide
light-curves for the 5 grizY photometric filters with roughly weekly cadence during obser-
vation seasons. The response line signals are measured by the 4 meter Anglo Australian
Telescope (AAT) at the Siding Spring Observatory in New South Wales, Australia. These
measurements are for visual-band wavelengths, and have a roughly monthly cadence.



4 Introduction

Figure 1.2: Histogram of AGN sources in the OzDES sample against redshift, with visible
ranges for Hβ, MgII & CIV. 793 sources are available in total, with 92 sources existing at redshift
ranges in which two lines are visible.

The regular cadence of the OzDES sample’s measurements for any given AGN are sep-
arated into half-yearly observation windows, separated by similarly sized seasons in which
the source is obscured by the background brightness of the sun. This windowing function
can cause significant error in lag recoveries, and can lead to entirely spurious results that
contaminate population level analysis if not identified and removed [30]. Aliasing is both
difficult to detect and difficult to characterize, and so the OzDES team has done significant
prior work in mitigating and accounting for its impact. We discuss some of these techniques
in Section 2.4.2. Despite these obstacles, lags have been recovered from the OzDES sample
for all three of the identified reverberating emission lines: Hβ[29], MgII[44] and CIV[22].



2
Background

AGN are highly luminous and highly variable sources, with different features of their geom-
etry producing distinct signals that can be distinguished spectroscopically even when too
distant to resolve spatially. The variations in the brightness of the AGN take time to ‘re-
verberate’ through its surroundings, and the timescale of this reverberation can be used to
‘map’ the AGN geometry ([5], [34]). This geometry can in turn can be used as a component
in estimating the mass of the AGN’s central black hole. In this section, I provide the reader
with an introduction to the conceptual underpinnings of reverberation mapping: its appli-
cations, a broad-view look at the methods used to perform it, and the challenges it faces. A
detailed review of the specific modelling and procedures used in AGN RM and this thesis in
particular are available in Chapter 3.

2.1 Physical Basis for Reverberation Mapping

Though the statistical modelling of AGN RM are constantly evolving, the underlying physical
mechanism have been well understood since they were introduced by Blandford and McKee
[5]. The core principle is that fluctuations in brightness of the central accretion disk interact
with the rest of the AGN geometry to produce similar variations, but that these variations
take time to propagate through the AGN’s geometry. This delay scales with distance that the
continuum light must travel, and so this delay time encodes information about the system’s
physical size.

In reverberation mapping, we simplify the AGN to two components: the central ‘engine’
of the SMBH with its bright accretion disk which drivnig the system’s variability, and the
fast-orbiting cloud of the broad line region (BLR) which reprocesses the engine’s continuum
of radiation as heavily Doppler broadened spectral emission lines. High resolution RM can
be used to infer more detail about the geometry and velocity of the BLR [33], or estimate
the scale of the accretion disk itself [49] using the x-ray ‘lamp post’ model of Cackett et al.

5
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Figure 2.1: Simplified AGN structure, showing the differing path lengths for continuum &
response light. Because light must first traverse intervening gap before exciting a response, signals
from the BLR appear to lag behind the light directly from the engine, and this lag encodes the
physical size of the gap.

[10], but the typical approach is to simplify the engine to a point-source and the BLR to a
face-on disk of small but finite thickness (Figure 2.1).

Near in to the engine, the radiation of the accretion disk is intense enough that any dust
is ionized. For the BLR to reprocess the continuum radiation, must be un-ionized, and so its
innermost radius occurs where the flux from the engine drops below some critical threshold.
Though the exact shape of the BLR is an open question, most RM modelling simplifies it
to be a ring of small but finite width surrounding the continuum producing engine, which is
simplified to a point source.
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If the AGN is aligned such that BLR and engine are both visible, we perceive a ‘Seyfert
1’ galaxy, from which our photometric observations allows us to track variations on the
accretion disk’s continuum brightness, while our spectroscopic measurements allow us to
track the variations in the BLR response. As the light must travel across the radial gap to
excite the BLR, there is a characteristic delay between variations in these two signals:

R = c · ∆t (2.1)

The high orbital speed of the BLR clouds Doppler-broaden the emission lines, giving the
region its name. Measuring this broadening informs us of this speed at which the BLR
orbits, while the lag encodes the radius at which it does so. Put together, we can infer the
mass of the central black hole from basic kinematics:

GMBH

R
= ⟨f⟩ ⟨V 2⟩ (2.2)

Here, ⟨f⟩ is a dimensionless ‘virial factor’ of order unity that accounts for the geometry
and kinematics of the system. In this way, we can use lags derived from time-series data to
infer both the geometry and mass of black holes well beyond the distances at which they
can be resolved spatially. Provided we have consistent enough observations of a source to
resolve the lag, we can then probe the masses of supermassive black holes out as far as our
spectroscopic measurements allow. For this reason, RM is the dominant method of inferring
black hole mass for sources beyond redshifts of z 0.1 [3].

To observe the ‘echo’ from the BLR, we need a clear emission line in its spectra with which
to observe these variations. In the OzDES sample, three such lines are used, with different
lines becoming visible at different redshifts as the wavelength of their corresponding emission
drifts in and out of the visual-band range of our spectroscopy. These lines are ‘hydrogen-
beta’ (Hβ) at 4861 Å, ‘magnesium two’ (MgII) at 2798 Å and ‘carbon four’ (CIV) at 1549
Å [26]. Note that there is an overlap in these redshift ranges, with two bands in which the
MgII line is visible simultaneous along with Hβ at low redshift and CIV at high redshift
(Figures 2.2 & 1.2).
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Figure 2.2: Visible wavelength vs redshift for the Hβ, MgII and CIV emission lines, with ranges
of visibility highlighted [26]

.

2.2 The Radius-Luminosity Relationship

Reverberation mapping is a powerful tool for constraining black hole masses, but its applica-
bility is limited by its need for long campaigns of spectroscopic and photometric observations.
After considering the high loss rate of source rejection that comes from aliasing (discussed
in Section 2.4.2), the number of sources we can fit is limited even for high-object count
surveys like OzDES. Fortunately, an alternative exists in the single-epoch lag estimation of
the ‘radius-luminosity relationship’ (R-L Relationship), an empirically observed correlation
between the source brightness of AGN and their size / rest-frame lag [25]. The physical
mechanism of the R-L relationship is that more luminous AGN ionize a larger surrounding
volume, forcing the BLR out to a larger radius. In a simplified model, we can say that BLR
begins at some critical flux, fcrit, indicating that lags should scale with the square root of
the AGN luminosity:

fcrit =
L

R2
BLR

∆t ∝ R ∝ L0.5

The actual mechanics of the BLR’s ionization are not so straight-forward, and so this rela-
tionship is generalized to a power law (Equation 2.3), which we constrain using lags recovered
from RM. This power law has been empirically observed for local Hβ sources with a slope
of α ≈ 0.5, and an ongoing effort of the recent generation of RM campaigns is to constrain
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new R-L relationships for MgII and CIV at higher redshifts. R-L relations have been con-
strained in the OzDES sample for all three emission lines[22, 29], and in this thesis I focus
my attention on the R-L relation for MgII recovered by Yu et al. [45], which is based on 25
MgII sources in the OzDES sample and recovers a slope of α ≈ 0.39.

log10 |∆t| = C + α · log10 |L| ± σ (2.3)

Figure 2.3: The R-L relation recovered for MgII by Yu et al. [45] using 25 sources in the OzDES
sample.

A properly tuned R-L relation allows for lag recoveries and black hole mass estimates
to be expanded out to a much larger sample, as it can be applied with only a single epoch
of information. For this reason, one of the terminal goals of reverberation mapping is the
recovery of lags specifically for the purpose of tuning of an R-L relationship.

2.3 An Overview of Lag Recovery Methods

Modern applications of reverberation mapping to AGN make use of two main techniques
for recovering lags: the simplified but numerically inexpensive interpolated cross correla-
tion function (ICCF), and the more precise but computationally costly Gaussian Process
modelling used by programs like JAVELIN.

2.3.1 Interpolated Cross Correlation Method

Though JAVELIN has emerged as the primary tool for RM lag recovery, the simpler alter-
native of the ICCF provides a coarser but much faster alternative that is less susceptible to
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numerical artefacts. Though the ICCF is not used in this thesis, it is an important feature
of RM campaigns and often used as a point of comparison to validate results (e.g. Section
2.4.2), and so is presented here as informative context.

Figure 2.4: Demonstration of the process of the ICCF [35]. By linearly interpolating, we can
align variations in the continuum and emission signals to identify the lag between them.

Introduced by Peterson [35], the ICCF method linearly interpolates between measure-
ments to construct a continuous light-curve and calculates the correlation function as would
be done for a continuous signal, i.e. numerically integrating to find the covariance. This
covariance, a measure of how much the variations in the signals move in concert balanced
against the amount they move against one another, is found by:

covar(y1(t), y2(t)) = ⟨y1, y2⟩ ≈
1

tb − ta

∫ tb

ta

y1(t)y2(t)dt (2.4)

where ta and tb are the times between which we have observations of both signals. This is
often expressed instead in the dimensionless form of correlation, the covariance normalized
by the variance of the two signals:

ϕ12 =
1

σ1σ2
covar(y1, y2), σ2

i =

∫ ∞

∞
y21(t)dt (2.5)

This correlation is a measure of how similar the signals are, while the ‘correlation function’
measures how this similarity changes as we slide one of the signals back and forth.

ϕ12(∆t) =
1

σ1σ2
covar(y1(t), y2(t− ∆t) (2.6)

The correlation function then gives a ‘goodness of fit’ distribution for different lags, and
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shows a peak at the lags where the two signals align. There is some freedom in how this
distribution is interpreted, and estimates of the lag can be taken from its peak, by taking
the mean or median the entire distribution (e.g. Figure 2.5).

Figure 2.5: Biases introduced in different lag likelihood summary statistics for GP modelling
via JAVELIN (top) and the ICCF (bottom) from, for OzDES-like data from [32]. All methods are
biased towards over-reporting the lag, with mean being the least reliable

Uncertainties in the recovered lag are then estimated from ‘bootstrapping’, randomly
varying data points within their measurement error and/or sub-sampling to remove a fraction
of the measurements and seeing how the chosen measure (the correlation function’s mean
median or mode) varies over many instances in a Monte Carlo fashion [16].

Despite its simplicity, the ICCF is still in use in AGN reverberation mapping and has
been found to broadly agree with more sophisticated methods, though with less precision
[30, 32, 42]. The ICCF’s low cost allows exhaustive algorithms that make it more robust
against statistical artefacts, and its relatively low numerical cost makes it an attractive
option for studies that require lag recovery on large sets of simulated data.

2.3.2 Gaussian Process Modelling (JAVELIN) & The Damped Ran-
dom Walk

Though the ICCF is still in active use in AGN RM, more precise results can be found by
leveraging our understanding of the statistical properties of the AGN’s underlying stochastic
variability. First introduced by Rybicki and Press 37 and now forming the core of the
methods used by JAVELIN [47] and CREAM [39], this method makes use of the fact that
the variations in the continuum brightness of AGN appear to be instances of the ‘damped
random walk’ [27, 28, 49], a stochastic Gaussian Process (GP; 36). Though these fluctuations
are not entirely deterministic, they do exhibit well characterized statistical behaviour that
allows us to make more precise inferences than the crude interpolation of the ICCF.

The central feature of GP modelling is that the light-curve’s variations are structured with
some characteristic timescale, such that measurements at one time also provide information
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about the signal at nearby times. This structure allows us to parameterize the light curve
even in the absence of a simple deterministic model. In addition to the lag, these stochastic
models characterize the variations in AGN brightness by a number of other parameters,
e.g. the timescale and amplitude of the fluctuations.

Programs like JAVELIN and CREAM recover lags by Markov Chain Monte Carlo (MCMC;
31) algorithms, randomly varying the model parameters (variance, timescale, lag, response
amplitude etc.) to map out high-likelihood regions of parameter space. Marginalising over
the other parameters, a likelihood curve for the delay is recovered, allowing this distribu-
tion to then be interpreted in a similar way to those produced by the Interpolated Cross-
Correlation Function (ICCF; 35) method.

2.4 The Aliasing Problem & Its Impacts

As distant AGN are dim compared to the background brightness of the sky, ground-based
observation campaigns like OzDES are necessarily broken into regular half-yearly ‘seasons’
separated by times in which the AGN is masked by the brightness of the sun. This windowing
function leads to a problem in RM called ‘aliasing’, which creates spikes in the recovered lag
likelihood distribution for lags that fall within these seasonal gaps [30].

Aliasing leads to two categories of problems: numerical and statistical. Firstly, the
presence of multiple peaks can obscure the true underlying lag, meaning that sources heavily
affected by aliasing must be discarded in a so called ‘false negative’. Conversely, the fact
that the aliasing peaks are of finite width can give the false appearance of a well constrained
lag recovery even when there is no underlying lag being detected in the signal, resulting in
a so called ‘false positive’. Failure to remove false positives contaminates our population
data and obscures important underlying trends (e.g. the R-L relationship). Removing false
positives from a data-set is a non-trivial problem, and significant work has been done in
finding effective ‘quality’ cuts to remove false positives (e.g. Penton et al. [32]).

Aliasing creates multiple modes in the marginal lag-likelihood distribution. This mul-
timodality can lead some lag recovery algorithms to either misrepresent the lag recovery,
exacerbating the problems false positives and negatives, or to fail to properly converge at
all. These numerical issues are a central area of focus for this thesis, and are discussed in
detail in Sections 3.3.2 and 3.2.
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Figure 2.6: Continuum signal & response signals for Hβ and MgII for OzDES source
2925858108, showing the clear seasonal gaps.



14
B
a
c
k
g
r
o
u
n
d

Figure 2.7: Lag recovery distributions from JAVELIN for simulated data at decreasing levels of sample quality from left to right.
The true underlying lags are marked with a vertical line. These simulated sources emulate the cadence, seasonal gaps and relative
measurement uncertainty of OzDES sources, but sample signals generated from time series integration of the stochastic damped random
walk. Aliasing peaks can occur irrespective of the measurement quality, and become more prominent when the lag is near a n + 1/2
year mark, e.g. 180 d, 540 d etc [30].
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2.4.1 A Conceptual Explanation of the Aliasing Problem

The aliasing effect of seasonal gaps is a central problem in reverberation mapping of the
OzDES sample, and one of the main areas of focus for this report. This section presents a
qualitative explanation of the source of these aliasing peaks to provide the unfamiliar reader
with a conceptual sense of their behavior.

Fundamentally, all lag recovery relies on inferring and comparing the behavior of two
light curves, identifying the degree to which they conflict as one of them is offset in time
by some lag, and accepting or rejecting these lags based on some measure of the ‘badness
of fit’. In the ICCF method, the inference takes the form of interpolation and disagreement
is measured from correlation function, while in GP modelling the disagreement measured in
the form of a statistical tension between the measurements when fit with some set of model
parameters (discussed in detail in Section 3.1).

Figure 2.8: Qualitative demonstration of the source of aliasing peaks. When measurements
overlap (figure top-left) disagreement between the signals is easy to observe. By shifting the two
measurement series a half-step out of phase with each other (top right), the regions of disagreement
(red) are moved to regions at which the signal inference (shading) is vague.
The bottom figure shows the log-likelihood of a range of lags, with lags where measurements overlap
(black line) being strongly rejected, while the gaps between them (green shading) form regions of
weakened rejection in the form of aliasing peaks.

An element common to all such methods is that their ability to measure the ‘badness of
fit’ is limited by the degree to which the measurements overlap, and this overlap changes
at different lags. When measurements have a large overlap, we can easily notice differences
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in the signals and strongly reject that lag, and when there is little overlap we have little
constraining power (e.g. Figure 2.8).

This gives rise to the aliasing effect in cases where we have regularly sized and spaced
gaps in the data. If the measurements are in-phase, the observations of each signal overlap
closely and we can confidently reject lags that are a poor fit. Our confidence of rejection
drops As we move between these on-phase lags, resulting in lags that fall within the gaps
producing a local minimum in this constraining power as the measurements ‘fit between’ one
another.

Figure 2.8 demonstrates a worst-case scenario in which correlation timescale, the span of
time over which each measurement meaningfully constrains the light-curve, is much smaller
than the data gaps. As such, the aliasing peaks represent a complete lack of data overlap,
and so see a complete regression to the prior.

Figure 2.9: An example aliasing in a simulated AGN light-curve. The true lag is 360 d, and
the measurement cadence and seasonal gaps emulate a source in the OzDES sample. At a lag of
180 d, the lack of overlap between measurements of the the continuum (blue) and line response
(red) make difficult to determine if the two signals are in conflict or agreement with each other

The greatest danger of aliasing is that it can produce sharp, narrow peaks where no
underlying lag exists. In such cases, the apparent constraint presented is entirely spurious,
consisting entirely of the aliasing artefacts. Such ‘false positives’ are a major concern in
AGN RM, as they are hard to identify and obscure true population trends [30, 32].

2.4.2 Methods of False Positive Rejection & Aliasing Removal

The low apparent brightness of AGN mean that multi-year RM campaigns are unavoidably
restricted by seasonal gaps in their observations, and their results impacted by the effects of
aliasing. There has been considerable prior investigation into ways of reducing these impacts,
either by suppressing lags that are suspect of being associated with aliasing, or discarding
entire sources of questionable reliability. Even after such quality cuts have been applied, it is
still necessary to estimate the rate of false positives in the sample and the overall reliability
of each recovery, and there are similarly varied methods for this as well.
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A common technique of to suppress aliasing is to apply a weighting function to the
posterior lag likelihood that down-weights lags associated with poor data overlap. This
method, introduced by the Sloan Digital Sky Survey (SDSS; [19]) team, constructs a weight-
ing function based on the amount of data points that overlap at each lag ‘N(∆t)’, and then
convolving this with an estimate of the signal’s autocorrelation function, i.e.:

W (∆t) =

(
N(∆t)

N(0)

)2

∗ ACF+(∆t) (2.7)

where ACF+ indicates setting the ACF to be 0 if it becomes negative. After applying this
weighting, SDSS studies (e.g. Grier et al. [19], Homayouni et al. [21]) accept and reject lag
recoveries based on whether they pass a set of reliability criteria. For a recovered lag ∆t
with uncertainty σ, a source is accepted if:

1. The reported lag is significantly larger than zero, |∆t| > σ, giving a general test for
the significance of the recovery.

2. The weighting in Equation 2.7 removes no more than half the likelihood in the lag
recovery, giving a measure how how heavily affected by aliasing the likelihood distri-
bution is.

3. For lags in the region within ∆t ± σ of the recovered lag, the Pearson correlation of
the continuum and response signals (as measured by ICCF) must be > 0.5. This acts
as a test that the two signals meaningfully co-vary at this lag, instead of it simply
representing the ‘least worst’ fit.

SDSS also extent their their lag prior to negative lags, under the rationale that the
amount of the lag likelihood distribution at these non-physical values gives a diagnostic of
the overall reliability of the recovery. Rather than using this as a quality cut measure, they
instead use the fraction of negative lags as an estimate of the False Positive Rate (FPR) in
their sample, with the strictness of their quality cuts being tuned for FPR < 10%.

A more rigorous approach is taken by Penton et al. [32] in previous work with the OzDES
sample. A series of quality cuts are used to identify sources of high, low and moderate
reliability. These cuts are:

1. That the main (highest) peak be within 100 d of the distribution median. This gives a
measure of the degree to which the primary peak dominates the distribution.

2. That the recovered peak lag agree between JAVELIN and ICCF to within 30 d, protect-
ing against method-specific artefacts.

3. That the uncertainty in this peak be < 80 d, giving a measure of the overall strength
of the constraint.

The size of these cuts are chosen by simulating many AGN signals emulating of the
OzDES sample’s statistical properties, then determining cut sizes that best constrain the
resulting R-L relationship while minimizing bias in JAVELIN’s lag recoveries (e.g. Figure 2.5).
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By tracking the FPR of the simulated data before and after these cuts, we also gain an
estimate of the FPR in our real sample without needing to retain negative lags as SDSS
does. These quality cuts are extremely aggressive, with only 12% of sources expected pass
all three cuts to produce an FPR of 12% in the highest ‘gold standard’ of reliability. Prior
to such cuts, estimates of the FPR in the OzDES sample can be as high as 30% [32].

Studies often employ a mixture of these techniques. For example, in their analysis of
MgII lags in the OzDES sample, Yu et al. [45] employs the weighting function of SDSS, but
the quality cut procedures of Penton et al. [32]. Under these cuts, only only 25 of the 435
OzDES sources for MgII lags are retained, an acceptance ratio of only 5.7%. In this thesis, I
apply my attention to the 92 MgII sources in the OzDES sample for which a second response
signal is also available. Assuming a similar reliability, we would anticipate that only 6 such
sources would recover reliable, meaningful lags.

2.5 Multi-Line Fitting

To date, most applications of reverberation mapping to AGN have focused on recovering the
delay and/or tuning an R-L relationship for a single spectroscopic emission line, e.g, MgII
by Yu et al. [45] or Hβ by Grier et al. [18]. There has been some investigation into a more
complete use of the available light curves, e.g. looking for reverberations in the photometric
measurements [50] or combining photometry from different band passes Grier et al. [19], but
one as of yet unexplored avenue is the fitting of two lags simultaneously for sources with
multiple visible emission lines. There is good motivation to do this, as leveraging more data
at once should generally be expected to better constrain our lag recoveries. In particular,
combining information from multiple light curves will reduce the number of lags in which
seasonal gaps align, potentially mitigating the aliasing problem.

Modelling AGN signals as Gaussian Processes, the approach common to both JAVELIN

and the alternate method presented in this thesis, extends easily to the fitting of multiple
lags (e.g. Equation 3.10). This extension comes at the cost of increasing the number of model
parameters in MCMC fitting, and so provides also an opportunity for testing the viability
of lag recovery algorithms in higher dimensions. For this reason, we focus on such two-line
fitting in this thesis for both simulated data and the data of the OzDES sample.

We expect simultaneous multi-line fitting to have the greatest impact for sources in which
either both lines have similarly high signal to noise ratios, or cases in which the continuum
signal has poor signal to noise such that the contribution of the line response to the signal
resolution becomes significant. To identify such sources, we follow the lead of Penton et al.
[32] and use the ‘fractional variability’ as a measure of a time series signal to noise ratio,
though with the minor adjustment of using the weighted estimate of the signal mean instead
of unweighted.

SNR =
1

ȳ

√
1

N

∑
i

(yi − ȳ)2 − E2
i ȳ =

∑
i

(
1
E2

i
y2i

)
∑

i

(
1
E2

i

) (2.8)

Of the 92 two-line sources in our sample, many are characterized by extremely high
uncertainty on at least one of the signals, such that the summation in the square root of
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Equation 2.8 becomes negative. For such signals, we treat the SNR as being zero. These
SNR estimates are available for all sources in Appendix C.

Using this estimate, we identify 6 sources in which both response lines have similarly high
signal to noise, and 10 sources in which at least one response line has an SNR 4 times that of
the corresponding continuum signal. Two line sources are necessarily drawn from redshifts
at the edge of those line’s visible range, and so most of the response lines in our sample,
particular those for CIV, have high relative measurement uncertainty and poor signal to
noise ratios.

Figure 2.10: Spectrum for source near the edge of redshift range for CIV visibility, from
Figure 2 of Yuan et al. [46]. Measurements are noisier at the edge of the wavelength domain, and
so measurements of the line strength are similarly poorly constrained. In this example, proper
measurement of the CIV line would be difficult.
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3
Modelling & Methods of Lag Recovery via

Gaussian Processes and MCMC

In this section, we provide an overview of the main techniques used by programs like JAVELIN
to perform reverberation mapping through the modelling AGN light curves as stochastic pro-
cesses. This chapter is intended to help the reader familiarise themselves with the general
statistical concepts at play in existing methods, while specific details on the numerical tech-
niques used in this thesis are available in Chapter 4.

3.1 A General Approach to Gaussian Process Mod-

elling

In this section, we provide a general overview of the modelling of a time series signal as
a GP, including the methods by which this modelling can be used for lag recovery and
signal constraint / interpolation. Such methods have been applied in astrophysics for some
time [37], and form the statistical core of programs like JAVELIN and CREAM. Details of this
procedure as applied specifically to the AGN signals are in section 3.1.1.

The driving signals of an AGN are inherently stochastic, but not entirely random. Instead
of producing meaningless noise, their signals are structured in that they take time to vary
from high to low: measurements at nearby times are correlated (Figure 3.1). If we observe
the signal at some time, we also gain information about what that signal was doing at nearby
times. This is described by an auto-covariance function that relates how similar the signal
is to itself at any two points in time:

Φi,j = Φ(ti, tj) = ⟨y(ti), y(tj)⟩ (3.1)

This covariance function is the defining feature of the GP and encodes all of its statistical

21
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behaviour. Different GPs will have different covariance functions of varying complexities,
but for our purposes this always a symmetric 1, positive definite function. For a signal with
well defined variability σ2 = ⟨y(t), y(t)⟩, this can be in terms of the dimensionless ‘correlation
function’:

Φi,j = Φ(ti, tj) = σ2ϕ

(
|ti − tj|

τ

)
(3.2)

In this way, a covariance function requires at least two parameters: the amplitude of the
signal’s variability ‘σ’ and a correlation timescale ‘τd’ describing how quickly the variations
occur.

If we have some time series of signal measurements yi = y(ti), this covariance means that
each measurement also encodes information about the signal at nearby times, including the
other neighbouring measurements. A convenient way to think of this is to imagine some
underlying signal ‘u(t)’ to which our observations are linearly related:

yi = Φi,1u1 + Φi,2u2 + . . . (3.3)

Defining a ‘covariance matrix’ Ci,j = ϕi,j, this linear system can be used to evaluate the
likelihood, L, a measure of how well the GP, for a given set of parameters θ, describes our
observations:

P (θ|y⃗) ∝ L ∝
exp(−1

2
y⃗TC−1y⃗)√
|C|

(3.4)

The above applies only to an ideal Gaussian process with zero mean and no measurement
uncertainty. In practice, our observations are of a signal which is a combination of the
structured Gaussian process ‘s(t)’ and the uncorrelated measurement noise ‘n(t)’, i.e. y(t) =
s(t) + n(t). This noise manifests as extra diagonal terms in the covariance matrix. For a set
of 1σ measurement uncertainties {Ei}, the covariance matrix becomes:

C = S +N

Nii = Ei, Sij = Φ(ti, tj)
(3.5)

To account for uncertainty in the mean of each signal, there are two approaches. The
first is to simply subtract off the mean and introduce it as another model parameter:

P (θ|y⃗) ∝ L ∝ 1√
|C|

exp

(
−1

2
(y⃗ − ȳ)TC−1

⊥ (y⃗ − ȳ)

)
(3.6)

1Many sources describe correlation functions in the form ϕ(∆t),∆t = |ti − tj |. Here, this is not done to
avoid possible confusion with the signal lags, also denoted ∆t.



3.1 A General Approach to Gaussian Process Modelling 23

or all possible values of the mean may be marginalized over analytically as is done in JAVELIN

and the work of Zu et al. [48]:

P (θ|y⃗) ∝ L ∝
exp(−1

2
y⃗TC−1

⊥ y⃗)√
|C| × |LTC−1L|

(3.7)

where

C−1
⊥ = C−1 − C−1LCqL

TC−1

Cq = (LTC−1L)−1

L = [1, 1, ...]T

These covariances can, for a set of fixed parameters, be used interpolate the statistical
behaviour of the signal between measurements (e.g. Figure 3.1). For some set of ‘data’
measurements y⃗d, and seeking to recover a signal curve y⃗c, the mean and variance are:

s⃗c = ST
cdC

−
dd1y⃗

∆⃗s2c =Scc − ST
cdC

−
dd1S

T
cd

(3.8)

Where subscript ‘cc’ indicates the square covariance matrix of the interpolated time series,
‘dd’ is the same for the measurement times and ‘cd’ is the rectangular covariance matrix
connecting the two.

This procedure is for only a single signal, but we can extend it to cases of ‘driving’
and ‘response’ signal, such as the continuum and reverberating emission lines of an AGN.
Provided the response is linear, i.e. that the driven signal ‘ya(t)’ is related the continuum
signal ‘yc(t)’ via a transfer function ‘ψa(t

′
)’:

ya(t) =

∫
ψa(t− t′) · yc(t′)dt′ (3.9)

The covariance between any two measurements ‘yi’ and ‘yj’ on any two signals ‘a’ and ‘b’
that are responses to a signal with auto-covariance function Φc(∆) is:

Φi,j =

∫ ∫
Φc(ti, tj)ψa(ti − t

′
)ψb(tj − t

′′
)dt′dt

′′
(3.10)

This can be used to recover auto-covariances within a response signal by setting a = b, and
covariances with measurements on the driving continuum by using ψc(t

′
) = δ(t

′
).

3.1.1 The Damped Random Walk

The continuum signals from AGN have been found to match well to the statistical properties
of the ‘damped random walk’ (DRW), a continuous first order auto-regressive (CAR(1))
process in which the signal ‘wanders’ up and down randomly (Figure 3.1), but with a restoring
force returning it to a baseline with a characteristic timescale: [24, 28, 50]
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Figure 3.1: Example of an stochastic light curve interpolated per Equation 3.8. The top panel
shows the way that measurements (blue) constrain the possible paths of the stochastic signal (thin
black lines), while the bottom panel shows the analytical mean and variance of all such possible
paths (black dashed lines). Far from measurements, theses constraints devolve to the mean and
variance of the signal (red lines).

dy(t)

dt
=

−y(t)

τd
+

σc
2τd

dW (3.11)

where dW is the continuous stochastic element with variance 1, σc is the signal variability
amplitude that determines the magnitude of the excursions about the baseline and τd is
the timescale of the ‘damping’ force which in turn sets the timescale of the entire process
(Figure 3.1).

The defining feature of the DRW is its exponential covariance function, for which the
damping timescale also acts as the correlation timescale:

ΦDRW (∆t) = e
−|ti−tj |

τd (3.12)
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To model the response of the emission lines, a rectangular ‘top-hat’ transfer of width wa

and centered at characteristic delay ∆ta is used. This has the effect of making the response
signal follow the continuum, but ‘shifted, scaled and smoothed’ (e.g. Figure 2.1)

ψ(t′) =
Aa

wa

{
1, if t′ ∈ [∆t− w

2
,∆t+ w

2
]

0, otherwise
(3.13)

Such modelling then has 3 + 3n parameters, where ‘n’ is the number of response lines /
lags being fit, or 2 + 2n if marginalizing over the signal means as per Equation 3.7. As lag
recoveries are found to be generally insensitive to the smoothing timescale [42], it is common
practice to fix this parameter in order to simplify the system [19, 21, 32].

3.1.2 Lag Recovery via Monte Carlo Markov Chains

Provided the underlying signal follows the behaviour of a damped random walk, the process
for finding the marginal lag likelihood distribution is well established. However, it requires
the inversion of a matrix that scales with the total number of observations (Equations 3.7
& 3.6), which can be on the order of ≈ 100, meaning the each evaluation is numerically
expensive. Such inversion is not prohibitively costly for a small number of evaluations, but
the many parameters of our models make an exhaustive grid-integration intractable.

Instead, programs like JAVELIN make use of MCMC techniques, in which a ‘chain’ of
evaluations navigate towards regions of good fit, and then sample this region of parameter
space. MCMC techniques are numerous and varied, but typically involve a ‘burn-in’ or
‘warm-up’ phase, used to draw in towards the regions of highest probability, and then a
main ‘sampling phase’ to explore this region. If the chains have properly converged, and are
using an appropriate sampler, these samples will be distributed proportional to the posterior
likelihood. The density of the samples then allows recovery of the location and uncertainty
of the best fit parameters.

The defining feature of an MCMC algorithm is how the ‘proposal’ is generated and
accepted at each step in the chain. The effects of aliasing produce a distribution with multiple
highly separated regions of high probability, which can lead to a number of sampler-specific
artefacts that affect lag recovery. We discuss these samplers and their suitability to RM in
Section 3.3.2 and Section 4.1.
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Figure 3.2: An illustration of the general procedure for MCMC integration (right), which
evaluates only the high-likelihood regions of interest, compared to an exhaustive grid-search (left),
which wastes many evaluations in low probability space.

3.2 Geometry of The Posterior

When using GP models to perform lag recovery, we describe the properties of the AGN’s
light curves with a number of other parameters in addition to the lag, leading to a high
dimensional likelihood function. Much existing discussion of this distribution focuses solely
on the broadest features in the marginalized lag-domain, doing so to the exclusion of finer
details and behaviour in higher dimensions. These details are of practical interest, as they
influence what statistical and numerical techniques are applicable to reverberation mapping.

Most model parameters are ‘well behaved’, with distributions that are smooth, uni-modal,
uncorrelated with other parameters and are easily encapsulated by a sufficiently broad prior
(e.g. Figure 3.5). Exceptions to this are strong correlations between the amplitude and
timescale of the continuum signal, irregular and multimodal behaviour of the lag parameters,
and the poor conditioning that arises from low signal to noise measurements. In this section,
we examine each of these properties and the challenges they present.
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Aliasing & Lag-Space Properties

Though the posterior distribution is smooth and uni-modal in all other parameters, the
same is not true of the signal lags. The most well studied feature in the lag domain is the
seasonal aliasing peaks: regular spikes in likelihood every 180 d (e.g. Figure 3.3). These
peaks occur as a result of the observation windowing function, and so are always present,
but their relative prevalence is dependent on the signal variations. Faster cadence and lower
uncertainty in our observations narrow the width of these peaks, while the specific variations
in the signal during our observations affect their relative prevalence. Though a low signal to
noise leads to an entirely unconstrained lag, a single spurious aliasing peak can emerge even
if there is no meaningful lag encoded. Such ‘false positives’ are difficult to distinguish from
meaningful recoveries, and occur most often when the true lag is near an aliasing peak such
that the lack of data overlap make it to less likely to emerge as the dominant feature of the
distribution [30].

The aliasing peaks associated with seasonal gaps are well studied, but there is little
discussion in past RM work of a second aliasing effect associated with measurement cadence.
Aliasing arises from any regular gaps in measurement, and so OzDES-like data produces low
likelihood peaks of roughly weekly spacing, corresponding to the cadence of the continuum
observations. When fitting two lags simultaneously, a similar spacing occurs diagonally in
lag-lag space at 30 d intervals. Aliasing peaks are heavily suppressed when the correlation
timescale is larger than the time-series spacing of the data, and so these ‘weekly’ peaks are
extremely shallow to the point of not being an easily visible feature when viewing likelihood
distributions or MCMC results.

Cadence-scale aliasing is an inherently low likelihood effect, but can nonetheless pro-
duce significant numerical obstacles. When exploring parameter space, either by MCMC or
optimization, any method to vulnerable to pinning at local optima is at risk of becoming
trapped in these modes (e.g. Figure 3.3, top). Lags where measurements align create ‘walls’
of extremely low likelihood, which are both deep and have extremely sharp gradients due
to their small width, meaning any walker that navigates with the likelihood function’s local
gradients will have difficulty moving through the ‘flat’ space between aliasing modes.

The multi-modal distributions that arise from aliasing and the roughness of the inter-
modal space present obstacles for many sampling methods. Properly handling these issues
is one of the main goals of this thesis, and I discuss solutions to these problems in Chapter
4.
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Figure 3.3: Demonstration of the roughness in the likelihood function arising from measurement
cadence. All figures show the posterior for a simulated sources with true lags at 150 d. The top
row shows the geometry in the dimensions of correlation timescale and one of the AGN lags, while
the bottom shows the geometry in lag-lag space.
Top middle shows the failure of MCMC chains (red) to navigate through the rough the inter-modal
parameter space, causing a complete failure of the MCMC output (top-right) to recover the true
likelihood distribution (top left).
Bottom middle shows the high contrast log-likelihood function in lag-lag space, in which the regular
striations arising from the weekly-scale cadence can be seen, as well as the diagonal striations from
the monthly cadence of the spectroscopic measurements. Bottom right shows the same as bottom
middle, but with the the contrast adjusted to more clearly show the affect this roughness has on
the shape of seasonal aliasing modes.
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Degeneracy of Continuum Signal Properties

In fitting the DRW model to an AGN, most parameters are uncorrelated, but there is an
exception in the timescale and amplitude of the continuum signal. The DRW has decreasing
power at higher frequencies, and so there is an ambiguity as to whether any variations we
observe represent the full behaviour of the signal, or are a small fraction of a much larger,
slower variation. This results in the timescale τd and amplitude of the signal σc being
correlated, and a long tail in the posterior distribution for these continuum properties.

In the limit of τd → ∞, this correlation collapses to a complete degeneracy between
the parameters, as can be seen in Equation 3.11. This limit of infinitely long damping
timescale of corresponds to an un-damped random walk (UDRW), which has only a single
parameter to describe its variability that scales with σ√

τd
. Because the correlation timescale

can span several orders of magnitude, it is common practice to parameterize both it and σc
logarithmically. In log-space, this high-τd degeneracy results in a diagonal band with a 1:2
slope of ln|τd| against ln|σc| that extends to the edge of the prior space, (e.g. continuum
properties of Figure 3.5, right) with a primary ‘lobe’ at low τd / σc corresponding the best
fit for DRW-specific properties. The band is always present in the posterior distribution at
low likelihood, but only becomes a significant feature when the observed signal variations
fail to strongly demonstrate damping.

It is important to note that the high τd ends of the band are still entirely reasonable results
for modelling the signal. The UDRW is still a valid Gaussian process for modelling AGN
variability, one used by JAVELIN alternative CREAM, and lag recoveries are not particularly
sensitive to the specific choices of GP[42]. However, it should be noted that it is impossible
to choose a prior that fully encapsulates the band, as it extends indefinitely, and this can
introduce artefacts and inefficient sample rejection rates in some samplers (e.g. Section 3.3.2).

Effect of Signal Quality

For post parameters, we can easily enclose high likelihood modes with a reasonably broad
prior range. There is a common exception to this when fitting the amplitude of low signal
to noise response lines, a case that commonly occurs in OzDES sample for the low redshift
CIV lines that I examine in this thesis. In such cases (e.g. Figure 3.4) the signal variation is
small compared to the measurement uncertainty, and the ‘best fit’ solution is a flat line of
zero amplitude at the signal mean.

Much as the continuum band borders the upper range of the search boundary, such cases
result in the amplitude parameter bordering the lower A = 0 boundary of our prior space.
The physical basis for the response line requires that the amplitude be strictly positive: a
positive or negative variation in the continuum should be expected to produce a variation
of the same sign in the response line. As with the continuum, contours bounding the search
space is not an inherent problem, but can lead to sampling artefacts and high rejection rates.
Such cases can also lead to issues when using optimization, e.g. to find the peak likelihood
of the non-lag parameters in a scan.
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Figure 3.4: Example signal (left) and recovered distribution of the response line mean and
amplitude (right) for a low SNR signal in the OzDES sample.
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Figure 3.5: Typical corner plots of a 2-line fit, demonstrating the key features of the posterior geometry. Figure left is for OzDES
source 2925373860, and figure right is for a simulated AGN with an underlying lag of ∆t1 = ∆t2 = 360 d.
For the low quality source, we can clearly see the multiple peaks from aliasing on signal 1, while signal 2 is completely unconstrained.
For the high quality simulated source, we can see that all values are well constrained and mostly uncorrelated, with the only exception
being the degeneracy in the continuum timescale τd and variability σc.
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3.3 Behaviour of JAVELIN & Complications in Lag Re-

covery

To date, our most complete statistical model of AGN variability is that of the the damped
random walk with smoothing in its response signals, described in detail in Section 3.1.1.
The software package JAVELIN, which makes use of this model for its lag recoveries, has
established itself as the current state of the art tool in AGN reverberation mapping. In this
section, we introduce JAVELIN and the numerical methods it makes use of, and identify the
failure modes that that arise when these methods are employed against AGN with seasonal
gaps in their measurements.

3.3.1 The Affine Invariant Sampler & emcee,

For its MCMC runs, JAVELIN makes use of emcee from Foreman-Mackey et al. [15], an imple-
mentation of the ‘Affine Invariant Ensemble Sampler’ (AIES)[17]. The AEIS is a gradient-
free sampler that operates by tracking an ensemble of live walkers across parameter space,
using the distribution of this ensemble to generate proposals for each walker at each itera-
tion. The central principle of emcee is the ‘stretch-move’: at each iteration i, a walker at
position X i

k selects a random ‘complementary walker’, X i
j, using the line connecting the two

as a proposal direction along which the proposal, Yk, is made (e.g. Equation 3.6):

Figure 3.6: Demonstrating of the stretch-move proposal, from figure 2 of [17]

Yk = z ·Xk + (1 − z) ·Xj (3.14)

Here, z determines the distance travelled in the proposal direction, with z ∈ [0, 1] moving
towards the complementary walker, while z > 1 means moving away. z is drawn from the
distribution in Equation 3.15, with the typical value of a = 2 meaning that a walker can, in
any single step, move anywhere from doubling to halving the distance between it and the
complementary walker.

g(z) =

{
1√
z

if x ∈ [ 1
a
, a]

0 Otherwise
(3.15)
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This proposal is accepted or rejected in the typical MCMC fashion but with a factor zNDim−1

to account for the fact that the one dimensional proposal direction is acting as a proxy for
shells in NDim dimensional parameter space:

PAccept ∝ min(1, zNDim−1 · L(Yk)

L(xik)
(3.16)

Once properly converged, this sampling method is guaranteed to recover the mean and
covariance of the posterior distribution [15].

Where emcee fails is in the case of multi-modal distributions, for which it cannot properly
converge due to its proposal generation not easily allowing chains to migrate between modes.
When updating a single walker, a complementary walker chosen from another mode will allow
a proposal to be made, at furthest, halfway between the two. For well separated modes this
proposal will be made in the low-likelihood inter-modal space, and so will be overwhelmingly
rejected. If a complementary walker is chosen within the same mode, the majority of cases
will still cause samples to be rejected by virtue of the proposal direction. A proposal can
only be made in another mode if a complementary walker is selected from within the same
mode, the proposal direction aligns with the adjacent mode, and the proposal is drawn at
the very edge of its possible range. If the modes are narrow compared to their separation,
even this mechanism becomes impossible. The result then is that walkers have no means of
moving away from the first local optima they encounter, causing them to become ‘pinned’,
oversampling low likelihood modes and failing to properly converge. In the proceeding
section, we examine the impact this has on lag recovery.

Figure 3.7: A demonstrating of the failure mechanism of the stretch-move sampler in multi-
modal distributions. A given walker (purple) cannot migrate between modes unless a complemen-
tary walker (blue) is chosen such that it can ‘stretch’ across the inter modal gap.

The stretch-move AIES is also known to encounter issues in higher dimensional problems
[23]. emcee can have poor convergence at as low as 10 parameters, and can fail to mean-
ingfully converge at all in higher dimensions. This is not a major concern for lag recovery
of one or two AGN signals, which involves 4-9 parameters at most, but does exclude emcee

from being applied to higher dimensional models, such as population stacking (e.g. Brewer
and Elliott [7]) or even to more complexly parameterized models for a single AGN.
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3.3.2 Failure Modes of JAVELIN

To date, the Damped Random Walk (DRW; 28) represents our most complete model of
AGN variability, and the program JAVELIN has established itself as the standard tool for
lag recovery using this model. However, when dealing with the multi-modal distributions
associated with seasonal gaps, JAVELIN is subject to numerical artefacts that can severely
affect the quality of lag recovery. In this section, we examine the origins of these failure
modes and explore their impact on reverberation mapping.

Pinning of Chains to Local Optima

As discussed in Section 3.3.1, JAVELIN’s MCMC sampler emcee encounters significant issues
with multimodal distributions. The particular way that the stretch-move sampler gener-
ates proposals leaves little opportunity for MCMC chains to migrate between local optima,
causing the them to become ’pinned’ to the first mode they counter during burn-in.

If the modes are sufficiently compact, i.e. with sharp borders, the proposal generation
in Equation 3.15 makes it extremely unlikely that a proposal will be drawn from within
another mode. If the complementary walker for generating the proposal is selected from
within the same mode as the moving walker, the the maximum possible distance the proposal
can be made at is twice the width of the mode as measured from its leading edge. If the
complementary walker is chosen from a separate mode, the maximum proposal will be drawn
from roughly halfway between the two modes. In both cases, unless the modal width is of
similar scale to the inter-modal separation, it becomes vanishingly unlikely that a proposal
will be made that takes a walker from one mode to another in a single jump. Instead,
a successful crossing between mode requires that at least one sample be accepted in the
low-likelihood inter-modal ‘flat space’, which has a vanishingly small probability.

As a result of chains being unable to move between modes, they are pinned to the
first local optima they encounter. As the ensemble is unable to properly converge, samples
are instead drawn from theses modes at a rate disproportionate to their likelihood. In
reverberation mapping of OzDES-like signals, this leads to JAVELIN over-sampling otherwise
insignificant aliasing peaks, drastically inflating them relative to their true prevalence in
the underlying posterior distribution (e.g. Figure 3.8). This obscures the ‘true’ peak in the
distribution, leading to cases where a meaningful lag is unable to be recovered.
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Figure 3.8: Demonstration of JAVELIN’s failure mode in multi-modal distributions. All plots
are for a simulated AGN signal with a true lag at ∆t1 = ∆t2 = 180 d, mirroring the cadence and
seasonal gaps of an OzDES source. Top left shows the true distribution as recovered from an exhaus-
tive grid search, while top right shows the likelihood distribution as recovered by JAVELIN. Bottom
left shows the log-likelihood of the true distribution, showing the locations of the low likelihood
aliasing modes. Bottom right shows the post burn-in walker paths of JAVELIN, demonstrating the
way the way in which they fail to migrate between the modes and over-sample the aliasing modes.

In addition to distorting the lag recovery, this issue also leads to a wasteful number of
rejected samples being proposed. In the documentation for emcee, Foreman-Mackey et al.
[15] notes that acceptance ratios below 25% indicate the emcee has failed to converge, likely
being a sign of multimodality. A typical JAVELIN run on an aliased AGN signal can return
acceptance ratios in the range 3% - 20%, demonstrating the program’s poor suitability to
signals of this nature.
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Over-Sampling Near Prior Boundary

Though the JAVELIN’s failure when encountering multimodality is its most significant issue,
there is a secondary concern with its sampler. emcee’s proposal method performs poorly
when high likelihood modes extend to near the prior boundary, as proposals are frequently
made beyond this boundary and then immediately rejected. When a proposal is rejected,
the chain’s previous position is retained as a sample. This leads to chains ‘bunching up’ and
over-sampling near the edge of the prior space (e.g. Figure 3.9). For most parameters, this
can be avoided with a sufficiently broad prior range, but, as we note in Section 3.4, there are
cases in which high-likelihood contours extend to the edge of physically possible values, or
extend indefinitely. This is not a major concern in lag recovery, as the affected parameters
do not strongly impact lag recovery [43].

Figure 3.9: Example of continuum property contours for for a signal fit by JAVELIN. Results
are for simulated data, with the truth values marked in dashed lines. The primary lobe in the
bottom left represents a DRW solution, while the flat band extending to τ → ∞ is the degenerate
UDRW solution. JAVELIN, showing the ’bunching up’ near the boundary, causing a second peak
at the upper edge of the domain due to emcee sampling artefacts.

In the case of the degenerate band in the continuum properties (e.g. Figures 3.9 and 3.5
(right)), JAVELIN has an optional ad hoc method for constraining this band in which it
recovers continuum properties from a fit of the the continuum signal only, which has less
confounding factors and so delivers well constrained contours, and then applies a broadened
version of these constraints as a prior when performing lag recovery.
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LITMUS: Lag Inference Through The Mixed
Use of Samplers - An Alternative Program for

Lag Recovery

Seasonal gaps are a characteristic feature of multi-year AGN surveys, and JAVELIN consis-
tently fails to accurately recover the resulting multi-modal lag-likelihood distributions. This
obfuscation of signal lags, as well as emcee’s wastefully high sample rejection rate in aliased
signals, motivates us to employ different sampling algorithms that are better suited to the
challenges of AGN lag recovery.

In this section, I present a new program for reverberation mapping, LITMUS (Lag Inference
Through the Mixed Use of Samplers). I have designed this alternative method for AGN lag
inference to be specifically suited to the challenges posed by seasonal observation gaps.
This procedure combines two techniques, nested sampling and Hamiltonian Monte Carlo,
leveraging the advantageous properties of each for lag recovery that is robust against the
pitfalls that JAVELIN encounters, while remaining efficient in high dimensions.

4.1 Alternative Samplers

This section provides a conceptual introduction to the two sampler types used in LITMUS’s
alternative lag recovery method. This is not a rigorous overview, and is instead intended only
to equip the reader with a qualitative understanding of the methods and their behaviour.

4.1.1 Nested Sampling, JAXNS

emcee’s poor performance in multimodal posteriors motivates us to apply other sampling
methods that are better suited to the problem at hand. One such option is Nested Sampling,

37
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a gradient free sampling method robust against multi-modality[38]. Nested sampling is not
strictly formulated as a contour estimator, and is instead intended to be an integrator over
all parameter space to find the ‘evidence’, the total probabilistic mass of the model:

Z =

∫
L(θ)dθ (4.1)

The core concept of nested sampling is to draw samples of strictly increasing likelihood
to allow for Lebesgue integration of the posterior, with different implementations using a
variety of methods to efficiently draw these samples. The general procedure common to all
methods is, per Albert [1]:

1. Draw a random set of NLive “Live points” from the prior.

2. By some method, advance each of these live points to a position in
parameter space of greater likelihood such that the distribution of
live points ‘shrinks’ in towards the modal peaks.

3. Use the lowest likelihood of all current samples as an estimate of the
contour likelihood to check for convergence.

4. If not converged, go to 2.

The distribution of the points at each iteration gives an estimate of the size and shape of
likelihood contours, which can be integrated over successive iterations to give the total model
evidence. Even when we are not seeking to recover this integral, the shrinkage procedures for
drawing samples are still an effective way of estimating the location, shape and prevalence
of the different ‘islands’ of probability in a multimodal posterior. Though not an MCMC
algorithm in the true sense, the evaluations made by nested sampling can be used in MCMC
applications through ‘weighting sampling’, in which the likelihoods of these evaluation points
are used to sub-sample them in a way that generates a sample representative of the underlying
posterior distribution [1].

Figure 4.1: Shrinkage of contours in Nested Sampling over successive iterations ( from figure 1
of Brewer et al. [8]).
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In this project, I employ nested sampling via the JAX based implementation JAXNS from
Albert [1], which readily integrates into NumPyro. There are two tuning parameters in this
implementation: the total number of live points, and the maximum evaluations / number
of samples per live point. The number of live points determines how reliably the modes can
be identified: using too few can lead to modes being ‘missed’ or poorly estimated [2], while
sufficient total evaluations must be made to ensure proper convergence. Albert [1] advises
using a ‘few’ evaluations per live point, and a number of live points per Equation 4.2:

NLive = 50NModes(NDim + 1) (4.2)

where NModes is the number of distinct modes in the posterior distribution and NDim is the
number of dimensions / parameters being fit for. Too few live points can result in modes
being entirely missed by the sampler, and so it is crucial not to under-tune this parameter.

4.1.2 Hamiltonian Monte Carlo / The No U-Turn Sampler

Figure 4.2: An example of an HMC chain navi-
gating about a Gaussian distribution [11] with arbi-
trary parameters ‘x’ and ‘y’. The walker moves about
the distribution as though sliding around a ‘bowl’ that
deepens at regions of high likelihood, with regular kicks
randomizing the its direction and speed.

Gradient-free samplers like the AIES
and Nested Sampler inherently require
‘guess and check’ type sampling, which
can lead to low acceptance rates. An
alternative exists in Hamiltonian Monte
Carlo (HMC), which navigates through
parameter space by leveraging gradients
of the likelihood function. By anal-
ogy, the difference is similar to that
between the secant method and New-
ton’s method for root-finding: by hav-
ing analytical gradients at our disposal
we can achieve better performance and
less wasted iterations. Such gradient
based algorithms are normally human-
time expensive to implement as they re-
quire readily evaluable expressions for
these gradients, but this issue is side-
stepped through power of JAX’s auto-
differentiation[6].

HMC operates by way of a kine-
matic analogy, constructing a landscape
of potential energy that becomes deep-
est at regions of parameter space with
high likelihood. Each walker is con-
ceived of as a mass ‘rolling’ about this
landscape with a set mechanical energy.
The walker’s path is calculated numer-
ically using the typical approaches for time-series integration, such as the energy-conserving
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symplectic leapfrog method, much as we would for a physical system with conserved me-
chanical energy [4].

At intervals along its path, the particle is ‘kicked’ to randomize its energy and direction of
motion. An ensemble of many such walkers can easily navigate in and out of shallow optima,
but still have a draw towards sampling the most prevalent modes of the distribution.

HMC has three main advantages over gradient-free samplers like emcee. Firstly, the con-
tinuous kinematic paths of the walkers means that many meaningful samples can be drawn
with an extremely high acceptance rate. Secondly, the sampling is free of any assumptions
about the shape of the posterior: a single HMC walker can explore contours of any arbitrary
shape without distortion. And thirdly, the sampling method scales well into arbitrarily high
dimensions. These advantages come at the cost of poor behaviour in highly separated mul-
timodal distributions. As the sampler follows a near-continuous path in parameter space,
HMC is extremely susceptible to becoming trapped at local optima.

4.2 Procedure Overview

This section provides an introduction to the statistical and numerical procedures of LITMUS
and contrasts with existing software. Like JAVELIN, LITMUS models the AGN light curve as
a damped random walk with fixed timescale and amplitude. Unlike JAVELIN, LITMUS does
not include the top-hat transfer function to smooth the response curves, instead treating all
signals as being ‘scaled and shifted’ copies of the same signal so as to reduce the number
of model parameters. The transfer function is known to have little impact on lag recovery
for the low-cadence OzDES data [42], and is typically fixed at a nominal value when using
JAVELIN [21, 32].

For compatibility with TinyGP, we do not marginalize over means as JAVELIN does (Equa-
tion 3.7), and instead include the mean of each signal as a model parameters (Equation 3.6).
Our model then contains 3n+ 3 parameters when fitting n lags: the amplitude and mean of
each signal, the timescale of stochastic variability and the lag of each signal.

Prior to fitting the data, LITMUS normalizes the data using estimates of their mean and
amplitude for uncorrelated data. i.e. for a set of measurements belonging to signal ‘a’, with
measurements {yai } and measurement uncertainty {Ea

i }, the normalizing transformation is:

yai → yai − ȳa

σa
, Ea

i → Ea
i

σa
(4.3)

where the mean and amplitude estimates are defined:

ȳa =
1∑
iwi

∑
i

wiyi, σ̄a =
1∑
iwi

∑
i

wi(yi − ȳi)
2, wi = (Ea

i )−2 (4.4)

This has no effect on the recovered lags, and is done only allows us to more easily set
prior ranges on the non-time like parameters by allowing us to assume that all signals have
means near zero and amplitudes of order unity. Following the lead of JAVELIN, the range
of allowable lags are rest riced to positive values up to ≈ 0.3× the observation baseline,
though this is an adjustable parameter in LITMUS. For consistency across all sources in the
OzDES sample, all results in this thesis use a fixed range of ∆t ∈ [0, 800] d. Similar also
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to JAVELIN, the amplitude of the continuum signal and timescale of variation are modeled
logarithmically using a log-uniform prior.

The model parameters and their chosen prior ranges are, for the continuum signal ‘c’:

• The damping timescale, fit in log-space, ln|τd| ∈ [2, 14].

• The amplitude of the continuum signal, ln|σc| ∈ [−2, 4].

• The mean of the continuum signal, ȳc ∈ [−20, 20].

And, for each fit response signal ‘a’:

• The observer-frame signal lag, ∆ta ∈ [0, 800].

• The amplitude relative to the continuum, Aa = σa/σc ∈ [0, 10].

• The signal mean, ȳa ∈ [−20, 20].

To properly explore parameter space in light of the concerns outlined in Section 3.2,
LITMUS makes use of a ‘mixed’ sampling method. HMC, though a better exploratory sampler
within a single mode, fails to navigate through the ‘rough’ lag-space likelihood distribution
(e.g. Figure 3.3), and so LITMUS uses the more robust approach of nested sampling to first
locate these ‘islands’ of likelihood. This is in place of the ‘burn-in’ phase employed by
JAVELIN, but avoids the over-inflation of the aliasing modes, as nested sampling is robust
against local optima issues. LITMUS then uses HMC for its ‘main’ sampling run, initiating a
series of many walkers within each mode as recovered by nested sampling.

The starting position of these chains are drawn from the nested sampling evaluations
using weighted sampling (a utility already provided by JAXNS). In this way, the starting
locations of the HMC chains are already distributed across the modes proportional to each
modes total ‘likelihood mass’. Provided we draw enough start locations / run enough chains,
we can be confident that our recovered MCMC outputs will reflect the prevalence of each
mode, even in cases where their isolation from one another means the HMC chains are unable
to migrate.

HMC chains propagate through parameter space through time-series integration, which
requires a time-step size to be nominated. Rather than estimate the step-size a priori, we
make use of a feature in NUTS, NumPyro’s implementation of HMC, to tune the step size
during its burn-in phase. By running 200 pre-sampling steps, NUTS is able to locate a good
fit for this step size.

4.3 Sampler Tuning

Though its main sampling run is performed by HMC, the inability of these chains to navigate
between modes means that LITMUS is extremely sensitive to the accuracy of the initial nested
sampling. Under-sampling at this stage can result in modes being under-represented, and
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Figure 4.3: A representation of the way in which LITMUS combines nested sampling and HMC
as demonstrated for the parameters of correlation timescale and lag. Nested sampling (red, left)
is used to determine the location and prevalence of each mode. Samples (green crosses) are then
drawn from this result and used as initial positions for HMC chains, which then sample the modes
for a clear final result (blue, right).

may cause significant modes to be missed entirely. For this reason, it is important to not
‘under-tune’ either the number of live points or evaluations at this stage.

Albert [1] advises that number of live points scale with the number of parameters and
expected modes samples per Equation 4.2. Under a worse-case scenario, the number of
significant modes will be that of all possible aliasing peaks, occurring in a grid every 180 d,
plus one ‘true’ peak:

Nmodes = 1 +

⌊
lag range

360
+

1

2

⌋Nsignals−1

(4.5)

Given how susceptible lag recovery is to under-tuning the live points, we double the number
of live points nominated by Albert [1], and choose a similarly conservative 100 evaluations per
live point to remove any question of convergence. Using also that the number of parameters
is 3Nsignals, the number of evaluations used by LITMUS for the nested sampling is as given in
Table 4.1.
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Fit Type Est. NModes NDim Num Live Max Evals

Cont. Only 1 3 400 40,000
One Line 3 9 2,100 210,000
Two lines 5 15 500 500,000

Table 4.1: Standard tuning parameters for LITMUS’s nested sampling phase

When moving the main sampling phase, we have to consider the worst case scenario of
zero mode migration for each chain. In this case, it is important that we draw a sufficient
number of samples from the nested sampling results / initiate enough HMC chains that
we representatively sample the modes. We can make some estimates of of the required
number of samples by considering that the probability of any sample being drawn from a
particular mode obeys a binary distribution. For a properly converged nested sampling run,
the probability that a sample will be drawn from that modes is ‘p’, where p is the total
fraction of the posterior likelihood associated with that mode. If we draw ‘Nsamples’, the
mean and variance of the total number of samples drawn from each mode is then:

Mean(Ni) = pNsamples, Var(Ni) = p(1 − p)Nsamples. (4.6)

For a representative sample, we require the variability to be small compared to the mean.
Defining this relative error as ∆ =

√
Var(Ni)/Mean(Ni), the required number of samples

for a particular relative error is:

Nsamples =
1

∆2

(
p−1 − 1

)
. (4.7)

.
For ‘M ’ modes, the median probability is p̄ = 1

M
. For an estimate of an appropriate number

of samples, we say that the accuracy of a small mode, say r = p
p̄

= 20%, must be sampled

accurately to within ∆ = 20%. For 5 modes in a 2-line fit, per Equation 4.5, this gives a
required number of samples:

Nsamples =
1

∆2

(
M

r
− 1

)
= 600. (4.8)

All results presented in this thesis use these tuning parameters, with an HMC chain length
of 600 samples per chain post burn-in.

4.4 Software Packages

A central computational problem of AGN RM is the numerical challenges posed by the high
cost of evaluating the likelihood function for a GP. Though efficient sampling algorithms cab
minimize the number of evaluations required, the computational efficiency of each individual
evaluation is still a matter of practical concern. Though written predominantly in Python,
JAVELIN achieves good performance by performing its matrix inversion using the extremely
efficiency FORTRAN-based linear algebra package (LAPACK).
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To achieve a similar end, LITMUS has been programmed in the “just-in-time” (JIT) com-
piled framework JAX. JAX is a python integrated language that allows code to be written in
the easily maintainable syntax of Python, while achieving a order of magnitude speed-up by
compiling certain sections of the code at run-time. In addition to this computational speed-
up, JAX also has automatic differentiation (autodiff) features, which allows it to compute
the exact gradients of any well-behaved function. Autodiff allows the use of gradient-based
algorithms like HMC without the onerous ‘by-hand’ calculation of such derivatives.

To perform the Bayesian inference, LITMUS use the JAX based probabilistic programming
language NumPyro, which provides a framework for both the statistical modelling and sam-
pling. NumPyro provides an implementation of HMC in the form of NUTS, but does not have
an in-built nested sampling algorithm. Instead, we make use of JAXNS, a JAX-based imple-
mentation of nested sampling which combines the slice sampling of PolyChord [13] and the
Gaussian bubble estimation of MultiNest [20]. Gaussian Process modelling is performed us-
ing the TinyGP package, a ‘GP accelerator’ with a well maintained integration with NumPyro.
TinyGP, also programmed in JAX, provides computationally efficient and end-user friendly
utilities for constructing, interpolating and evaluating the likelihood of Gaussian processes.

Collectively, these tools provide a framework that allows for computationally efficient
Bayesian modelling of the AGN signals. This framework can be easily extended to include
variations on the physical modelling of the system or to implement new sampling algorithms,
and so also gives a base from which to extend RM methods.

4.5 Validation of Results & Comparison with JAVELIN

To confirm that this new method properly recovers lags and compare to existing techniques, I
test LITMUS against a sample of 20 simulated 2-line AGN and contrast with the lags recovered
by applying JAVELIN to these same sources. Signals are generated by time series integration
of Equation 3.11 at a uniform time-scale of τd = 400 and using similar lags for both response
signals at ∆t1 ≈ ∆t2. The 20 AGN are simulated in groups of 4 at lags of 150 d through 550
d, with each group separated by 100 d increments. The measurement cadence, uncertainty
and signal to noise ratio directly emulate sources in the OzDES sample, with simulated AGN
for each lag ranging from high to low measurement quality.

Taking a broad view, we find that LITMUS and JAVELIN both produce similar contours for
the ‘true’ mode, but that JAVELIN consistently over-reports spurious aliasing peaks. Some
key examples for two-line fitting are shown in Figure 4.5, demonstrating LITMUS’s more
reliable recovery of the underlying lag-likelihoods.

These distributions are summarized using median statistics, with the recovered lag being
reported as the distribution median and the uncertainty as half the separation of the 16.8
and 78.2 percentiles. 1 Using these summaries, we find that LITMUS produces lags that are
of a lower spread to JAVELIN about the true lags, and that have significantly better precision
(e.g. Figures 4.4 and 4.6).

1Penton et al. [32] finds that the peak likelihood is the least biased measure of the recovered lag, but
also finds that the median is of similar accuracy after applying quality cuts. We to not use the lag of peak
likelihood to avoid potential inconsistencies arising from binning or smoothing of the posterior.
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Figure 4.4: Comparison of LITMUS and JAVELIN lag recoveries when fitting each source’s two
lags independently of one another. We can see general agreement with truth for both, but with
lower spread and measurement uncertainty in the LITMUS results. Shown also is a band 40 d either
side of the truth value to indicate our criteria for a successful lag recovery.

A central challenge posed by aliasing is the identification and removal of false positives,
more so than the precision of the accepted lags. To examine this matter, we test also the false
positive rate of LITMUS and JAVELIN before and after suspect sources are removed, doing
so for both independent and simultaneous lag recovery. I employ the quality cuts of Penton
et al. [32], excluding the ICCF agreement cut for simplicity. I quantify the performance of
these different methods through two measures: the average deviation from the true simulated
lag and the fraction of ‘correct’ lag recoveries, where we consider a lag recovery to be correct
if it is within 40 d of the underlying true value 2. These measures are presented for all
sources, the sources that pass quality cuts and the sources that return correct lags only, with
the last of these representing the limit of a 100% accurate quality cut method.

2In their work, Penton et al. [32] define a correct lag recovery one that is within both 3 standard deviations
and 80 d of the truth. Due to the dissimilar uncertainties returned by JAVELIN and LITMUS (e.g. Figure 4.4),
I forego the uncertainty based measure in favour of a stricter fixed limit of 40 d.
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JAVELIN LITMUS

Independent
Fitting

Simultaneous
Fitting

Independent
Fitting

Simultaneous
Fitting

False Positive Rate
Pre-Cut 23% 38% 13% 18%
Post-Cut 20% 50% 19% 25%

RMS Deviation from Truth,
√
⟨(∆t− ∆ttrue)

2⟩, in days

Pre-Cut 75.0 136.8 35.2 31.9
Post-Cut 28.4 82.3 30.8 34.8
Correct Recoveries Only 24.6 22.1 16.8 20.1

Table 4.2: Comparison of JAVELIN and LITMUS performance for simulated data

LITMUS markedly outperforms JAVELIN when applied directly to the entire simulated
sample, both in the number of correctly recovered lags and the average spread from these
truth values (Table 4.2). However, while applying quality cuts has a significant improvement
on the results of JAVELIN, it degrades the quality of the recoveries from LITMUS. Such quality
cuts are tuned specifically to the characteristic behaviour of JAVELIN in independent line
fitting, and appear to be poorly suited to the result of this new fitting method.

To examine the performance of quality cuts, we examine their ability to remove false
positives and retain true positives in Table 4.3. The unsuitability of the existing source
rejection methods are clear: used in combination with LITMUS, they consistently under-reject
false positives while over-rejecting true positives as compared to their use with JAVELIN.

JAVELIN LITMUS

Independent
Fitting

Simultaneous
Fitting

Independent
Fitting

Simultaneous
Fitting

Fraction of Correct
Lags Accepted

45% 16% 37% 27%

Fraction of Incorrect
Lags Rejected

78% 33% 40% 0%

Overall Accuracy of Cuts 60% 65% 60% 60%

Table 4.3: Performance of Quality Cuts On Accepted Data

We also note that, for all fitting methods and quality cuts, the use of simultaneous
fitting does not give any consistent significant improvement in the lag recovery by any of our
measures, and causes quality cuts to perform markedly worse. It is clear then that our new
fitting method produces a significant improvement in lag recovery in and of itself, but that
new methods of detecting and removing false positive tuned specifically for LITMUS must be
found in place of the existing methods tuned for JAVELIN.
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Figure 4.5: Comparison of marginalized 2-line lag recoveries for JAVELIN (purple, left) and
LITMUS (blue, Right) for simulated AGN that reproduce the measurement characteristics of sources
in the OzDES sample, with the true underlying lags marked with dashed lines. LITMUS consistently
produces less prevalent aliasing peaks, allowing for a clear lag recovery in some cases where JAVELIN
fails to produce a primary peak (e.g. top and bottom rows).
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Figure 4.6: Comparison of LITMUS and JAVELIN behaviour in simulated data. Figures in the left column show the results of JAVELIN
(top) and LITMUS (bottom) for simultaneous fitting of lags for each source, while the middle column compares the agreement between
the independent and simultaneous fitting for each program. Figures in the right column show the agreement between JAVELIN and
LITMUS for independent (top) and simultaneous (bottom) lag recovery. All plots are for the full 20 simulated sources with no data cuts.
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4.5.1 Performance for Signals with No Underlying Lag

In Section 4.5, we considered only the behaviour of lag recovery programs as applied to signals
that meaningfully encode a lag. The opposing case, in which there is no reverberation to
observe, has little discussion in the literature. Such cases give a direct test of our ability to
detect and remove false positives, as the ‘true positive’ rate is zero. I test this case here by
creating 12 synthetic AGN through the random reassignment of the continuum and response
signals of sources from the OzDES 2-line sample. In doing so, I synthesise a set of sources
that directly emulate the statistical properties of the OzDES sample, but from which any
lag recovery is guaranteed to be a false positive. I then test LITMUS and JAVELIN on these
sources, both for independent and simultaneous lag recovery. Consistent with Section 4.5,
we find that the existing methods of false positive removal fail as applied to the lag recoveries
of our new method.

Success Rate of
False Positive Removal

JAVELIN LITMUS

Independent Fitting 52% 10%
Simultaneous Fitting 50% 10%

Table 4.5: Performance of false positive removal for LITMUS and JAVELIN

The underlying mechanism of this failure is that JAVELIN and LITMUS return dissimi-
lar lag likelihood distributions in the case of a false positive. JAVELIN’s failure modes for
aliased signals leads it to inflate the minor aliasing peaks, often causing multiple peaks of
comparable prevalence to appear in case of poor lag recovery. LITMUS, by contrast, more
accurately recovers the true prevalence of the modes, leading more often to a deceptively
well-constrained primary peak. The quality cuts of Penton et al. [32] rely on the clear
presence of multiple peaks to identify poor recoveries, and these criteria fail without these
JAVELIN-specific hallmarks of aliasing (e.g. Figure 4.7). As a result, these quality cuts fail
to identify false positives when applied to LITMUS, and fail to improve on the overall quality
of our recoveries.
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Figure 4.7: Lag Recoveries for JAVELIN (top) and LITMUS (bottom) for a signal with no true
lag encoded. The JAVELIN output shows a clear inability to resolve a lag, while the LITMUS output
may be accepted with unwarranted confidence.



5
Results & Discussion

In Section 4.5, we find that our new fitting procedure produces more accurate lag recoveries
for simulated AGN than existing alternatives. We are then motivated to apply to the real
data of the OzDES sample to see if any new information is revealed. In this section, I apply
our my lag recovery program ‘LITMUS’ to the 92 sources in the OzDES sample for which
multiple response lines are observed, and compare to results for these same source from Yu
et al. [45]. I interpret these recovered lags by examining two topics of interest: the ability of
the 2-line MgII samples to constrain an R-L relationship, and the impact that simultaneous
lag fitting has on lag recovery for these sources.

5.1 Application of LITMUS to the OzDES 2-Line Sample

In this section, I test LITMUS on the 92 sources in the OzDES sample for which multiple lines
are available. I acquire lag likelihood distributions for both independent and simultaneous
lag recovery, and interpret these distributions using median statistics as outlined in Section
4.5. Many sources fail to return a clear well constrained peak (e.g. Figure 5.1), and so we
apply I first and third quality cut criteria of Penton et al. [32] for significant lag recoveries
in an effort to remove such low quality results. Though roughly half of the MgII lags are
retained after these cuts, too few recoveries remain for Hβ or CIV for a meaningful statistical
analysis (Table 5.2), and so I examine the recovered lags for MgII only, comparing these to
the results of Yu et al. [45]’s study of MgII lags in the entire OzDES sample. The full set of
recovered lags are available in Appendix A, while their success or failure against criteria for
significant detection are available in Appendix B.
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Figure 5.1: Example of lag recoveries accepted and rejected by quality cuts. The left figure
shows the lag recovery contours for OzDES Source 2925693212, which fails to produce a primary
peak for either lag and so is rejected by quality cuts. The right figure right shows lag recoveries for
source 2938756405, which has a single well constrained peak for MgII, and so passes these cuts. In
both cases, the CIV lag is poorly constrained, and so does not pass the cuts.

Independent
Fitting

Simultaneous
Fitting

Line Type Total Sources
Passes
Cut 1

Passes
Cut 2

Passes
Cut 1

Passes
Cut 2

Hβ 6 6 1 6 3
MgII 92 86 46 84 45
CIV 86 28 0 24 0

Table 5.2: Summary of the number of lag recoveries that pass quality cuts in the OzDES 2-line
sample

Even after removing sources that fail to meet our significance criteria, we can still see
that the remaining sources fail to demonstrate a any consistent R-L relation (Figure 5.2).
Instead, we observe a clear bi-modality, with lag recoveries forming into two distinct groups
corresponding to the 180 d and 720 d aliasing peaks.

I compare these results to the MgII R-L relation fit by Yu et al. [43] for the entire
OzDES sample. In these past results, which applied similar quality cuts to lags as recovered
by JAVELIN, only 25 sources sources were accepted across the entire 435 objects in the OzDES
MgII sample. By contrast, we see double this number just in our limited sub-sample, with
a higher acceptance rate by an order of magnitude. This unreasonably high acceptance
rate, along with the concentration of lags at the aliasing modes, suggests that our sample
is overwhelmingly contaminated by false-positives. This failure of existing quality cuts to
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sufficiently reduce the false-positive rate is consistent with the findings for simulated data in
Section 4.5.1.

Figure 5.2: R-L Domain plot of all 92 recovered lag distributions for independent fitting of
MgII from the 92 OzDES 2-line sources (left) and the summarized lag recoveries for the 48 sources
that pass the quality cuts of Penton et al. [32] (middle). The right figure The right figure shows
the same as the middle, but with an overlay of the MgII R-L relationship as recovered by Yu et al.
[45] for the entire OzDES sample.

It is worth noting that the bulk of our lag recoveries are near the 540 d mark. Though
a suspect result for reasons of aliasing, this is still somewhat consistent with the prediction
of Yu et al. [45]’s R-L relationship. Sources with a true lag near such aliasing values are
associated with poor reliability of lag recovery [30], and so the high degree of noise in this
sample is not unexpected. By limiting ourselves to only the OzDES 2-line sources, we also
unavoidably restrict the luminosity range of our sample, making general trends in R-L space
difficult to resolve, and allowing the aliasing noise to dominate.

Yu et al. [45] identify 3 sources with reliable lag recoveries in our 92 source sample (Table
5.3), giving us a small set to check for consistency with our recoveries from LITMUS. We see
good agreement for source 2, and can attribute the difference for source 1 to our lag prior
extending only to 800 d. In their treatment of source 3, Yu et al. [45] note that the MgII
light curve has two outlier epochs, which they remove to achieve their recorded lag. They
note that not removing these causes the source to return a strong recovery at 540 d, which
is consistent with our results from LITMUS.
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Source Properties
Past

Recovery [45]
(days)

LITMUS

Recovery
(days)

OzDES ID Redshift log10 |λL3000| Lag Error Lag Error
1 2925515125 1.86 45.89 867 64 782.1 33.3
2 2938756405 1.79 45.51 538 28 532.8 20.5
3 2971214955 1.75 45.57 479 40 545.8 13.7

Table 5.3: Comparison of lag recoveries for MgII sources accepted by Yu et al. [45]

As with previous sections, we see that LITMUS has good agreement with existing studies
in cases where we can confirm a true positive, but that our ability to identify these reliable
sources is completely absent with current techniques. Significance criteria tuned for JAVELIN
and ICCF consistently under-filter poor recoveries when used in concert with LITMUS, and
such false positives then contaminate our data to the point of pure noise. It is clear that, if
we are to apply LITMUS at scale to OzDES like samples, we must first find a more suitable
means of quantifying the reliability of recovered lags.

5.2 Impact of Multi-Line Fitting in the OzDES 2-Line

Sample

In this section, I examine the impact that the simultaneous fitting of two AGN response
signals has on the lag recoveries for the OzDES sample. I examine this impact through
two lenses: firstly, the change in the number of recoveries that are well constrained by the
measure of Penton et al. [32]’s lag recovery quality cuts, and, secondly, a broader view of
how much influence simultaneous fitting has on the lag likelihood distribution in general.

I limit my analysis to only the sources that pass the quality cuts for at simultaneous or
independent fitting, as these represent the recoveries with some meaningful constraint on
the lags. As outlined in Sections 4.5 and 4.5.1, these cuts are of questionable applicability
to the fitting method used in this thesis, but still at very least narrow the sample of interest
to the sources that return one clear peak in their lag distribution.

To quantify the impact of multi-line fitting, I classify each source by the degree to which
it changes the recovered lag-likelihood distribution. A ‘high impact’ is any source for which
the recovered lag changes by more than 50 d, while ‘low’ and ‘moderate’ impacts are classified
based on the total shift in the recovered lag distribution. This shift is measured using the
correlation between the lag-likelihood distributions with and without multi-line fitting:

R =

∫ ∆tmax

0

L′(∆tInd) · L′(∆tSim)d∆t (5.1)

where L′(∆tInd) and L′(∆tSim) are the normalized marginal lag-likelihood distributions for
independent and simultaneous fitting, and [0,∆tmax] is the range of our lag prior. A ‘moder-
ate’ impact is any in which this correlation is below 95%. The number and degree of impact
for every source in the 2-line sample is listed in Table 5.5, and demonstrative examples are
shown in Figure 5.3.
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Significant
Detections

Total
Sources

Low
Impact

Moderate
Impact

High
Impact

Gain 9 3 2 3
Loss 8 7 0 1
No Change 34 33 1 0
Total 51 44 3 4

Table 5.5: Summary of impact of simultaneous fitting for sources that pass quality cuts

In general, multi-line fitting has very little impact on our results. The high-cadence
and low-error signal of the continuum already provides the overwhelming majority of con-
straining power for all sources, and so the most sources see a low impact. In particular,
most MgII recoveries see no meaningful effect from the simultaneous fitting of a CIV line,
as the measurement error of most of the CIV signals is so low as to give little to no mean-
ingful constraint (e.g. the CIV lags in Figure 5.1). We find no consistent improvement in
the uncertainty of lag recoveries or the number of sources that pass our quality cuts, with
a comparable number of sources being gained as ‘significant’ detections as are being lost
(Table 5.5).

In combination with our finding that multi-line fitting has no improvement on lag recovery
or the detection of false positives in Section 4.5, fitting lags simultaneously does not appear
to be a promising avenue of further research for reverberation mapping OzDES-like samples.
However, there is still the possibility that these results may be a function of our high false
positive rate, or a characteristic arising from the typical low signal to noise ratio of the
CIV lines. Two-line sources are necessarily located at redshifts in which at least one line
is at the limit of the observable wavelength range, leading them to more often have a poor
SNR, meaning at least one signal will provide little constraining power. Future samples with
different seasonal gaps or clearer measurements of the complementary response line signal
may see better results from the application of multi-line fitting.
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Figure 5.3: Examples of the impact of simultaneous multi-line fitting on lag recovery in the
OzDES sample. From top to bottom, shown are recoveries with a low, moderate and high impact
from multi line fitting.



6
Future Work

In this thesis, I have demonstrated a new method for AGN reverberation mapping that
outperforms the existing standard, but there are number of opportunities to further extend
this work. In this section, I outline the most immediate areas of interest in improving LITMUS,
in terms either of its applicability to real data and its general efficiency.

6.1 New Methods for Rejection of False Positives

In its application to both simulated and real data, we find that LITMUS outperforms JAVELIN
at a base level in lag recovery, but that the existing criteria for removing false positives from
our sample fail almost entirely when used in conjunction with this new fitting method. The
first and highest priority for future work is then to find new methods of estimating the
significance of lag recoveries, such that we can apply our new advanced tools to real data
with full confidence in their correctness.

The quality cuts applied in Chapters 4 and 5 determine the reliability of a recovery only
by the constraint of the recovered lag, not by the actual quality of this ‘best fit’. Even where
lag recoveries are well constrained to a single primary peak, acceptance of the results are
still conditional on the assumption that a meaningful lag actually exists. Rather, we should
test against the null hypothesis: that the continuum and lines are completely independent
Gaussian Processes with no correlation between them. We can measure this rigorously by
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comparing the total evidence for a model with lag as a parameter to the evidence for one
without:

r =
ZDelay

ZIndependent

, Z =

∫
PriorSpace

L(θ)d{θ}

Such evidence estimation through numerical integration of the likelihood is the primary
use-case of nested sampling, and so we have a readily available tool-set for making this
extension. The threshold for significance in this measure will need to be tuned to achieve
the best false positive rate. To do so, we can follow the prior work of Penton et al. [32],
in which many AGN simulations are used to optimize quality cuts for a particular AGN
sample.

Most current procedures of identifying false positives focus on the hallmarks of aliasing
that appear in the marginal lag-likelihood distribution, or on enforcing agreement between
different lag recovery methods. Such methods make use of only a limited amount of the
available data space, and so are liable to discard meaningful lag recoveries. Using evidence
ratios, which leverage all of our available information, may also lead to improvements in the
‘false negative’ rate as compared to existing methods. For sources like MgII, which only
have a total number of RM recoveries on the order of dozens, even a marginal improvement
in the source acceptance rate will be a significant advancement.

Having established that LITMUS eliminates the significant artefacts that JAVELIN pro-
duces in aliased sources in section Chapter 4, proper interpretation of these improved results
through optimized quality cuts present the opportunity to markedly increase the number and
quality of results in AGN reverberation mapping. Equipped with such a means to quantify
source reliability, we can then extend this new lag recovery method to the entire 735 AGN of
the OzDES sample. This thesis focuses only only the 92 two-line sources, a sub-sample that
is necessarily poorly behaved due to its low signal to noise, poor conditioning and limited
luminosity range, and so we would expect a better acceptance ratio when broadening our
scope.

6.2 Model Extensions

In this thesis, we apply only the simplest model of AGN variability as a Gaussian Process, in
which continuum and response are all drawn from the same underlying DRW with a constant
baseline brightness. There are two immediate extensions to this model we may consider, one
for modelling nearby AGN and another for future long-baseline surveys.

Programs like JAVELIN include a smoothing effect between the continuum and response
signals, motivated by the finite thickness of the broad line region. This smoothing, encoded
in the model in the form of transfer functions (e.g. Equation 3.13), has a negligible effect on
lag recovery when the observation cadence is coarser than the timescale of the smoothing
[42], and so is often not included as a parameter in RM of OzDES-like data (e.g. Grier et al.
[19], Homayouni et al. [21], Penton et al. [32]). This smoothing timescale is an important
element of high-cadence AGN RM, and may be a necessary feature for modelling high redshift
AGN in which the smoothing timescale is time-dilated to longer values. As GP modelling
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naturally adapts to such transfer functions (Equation 3.10), it is a natural next step to
include this in LITMUS to broaden generalize its use case.

Another extension we may consider is the inclusion of a non-constant baseline in one
or more of the observed signals. At present, we treat the mean all light curves as varying
about a fixed mean, but some sources in the OzDES sample clearly demonstrate variability
at different timescales (e.g. Figure 6.1). The techniques for describing time-varying baselines
with a linear function basis are well established [37], and we can naturally implement them
in NumPyro at the cost of a few extra model parameters. Alternately, we may consider mod-
elling signals as a mixture of multiple super-imposed Gaussian Processes. Such a model is
similarly easy to implement, as mixtures of GP’s are described by a simple linear combina-
tion of their respective covariance matrices / functions (e.g. the DRW and ’noise’ processes
in Equation 3.5).

Figure 6.1: Recovered continuum properties for OzDES source 69-B-2940901822, showing mul-
tiple behaviours at multiple timescales. The bottom figure shows the marginalized likelihood distri-
bution for the timescale of stochastic variation, while the top figure shows the confidence intervals
for the interpolated light-curves marginalized over all parameters. We can clearly see long-term
variability in the continuum that is not reflected in the MgII signal, resulting in an inability to
meaningfully correlate the signals and a total failure to interpolate the behaviour of the response
curves.
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6.3 Improved Sampling Algorithms for Better Numer-

ical Performance

In its current state, LITMUS has areas in which it can be significantly improved in compu-
tational efficiency, and we here identify three immediate avenues of interest. The current
tuning of the Nested Sampling parameters (Section 4.3) defers to a conservatively high value
for the number of evaluations to ensure good convergence. There exist numerical estimates
of convergence are well established for nested sampling [38], and these may be implemented
as a halting condition for the burn-in phase. This will provide both a speed-up in cases
where convergence is fast, and ensure convergence in poorly behaved cases.

Secondly, the transition from the nested sampling to the main HMC sampling phase is
presently somewhat wasteful, as it requires us to initiate on the order of 100’s of chains
to ensure we draw a proportionate number of samples from each mode (Equation 4.7).
Instead, we may consider using some clustering algorithm to identify the modes at the end
of the nested sampling phase (e.g. Wegmann et al. [41]), and initiate only a few chains
per mode. After mapping each mode individually, we can then combine their samples in
a representative way using a weighting via importance sampling [12]. In doing so, we can
remove the computational overhead of running 100’s of chains, providing a valuable speed-up
in LITMUS’s lag recovery run-time. JAX already offers efficient optimisation tools, and so this
too is a natural extension.

Finally, we note that the likelihood function in lag recovery, though high-dimensional, is
broadly uncorrelated in its various parameters (Section 3.2). Given nested sampling becomes
expensive in high dimensions (Equation 4.2), a faster alternative may existing in using nested
sampling over only the complex behaviour of the lag domain, with all other parameters at
fixed values of maximum likelihood.

6.4 Hierarchical Modelling of Population

The standard approach of reverberation mapping for a population of AGN is to examine
each source independently, assuming no prior or collective information about their lags. We
understand that AGN of similar luminosity should exhibit similar rest frame lags, with such
similarity being the physical basis for R-L relationships. Along this line of reasoning, it has
been demonstrated that ‘stacking’, the combining of lag-likelihood distributions of AGN of
similar luminosities as if they were measurements of a single source, is an effective means
of extracting predictive power from poorly constrained sources [14]. This approach has
also been extended to a more general hierarchical model, in which we allow for an inherent
spread in the lags, with a similar effectiveness [7]. We are then motivated to extend an
entire population of AGN spanning a range of luminosities in the form of a full hierarchical
population model, using recovered lags to constrain an R-L relationship, while simultaneously
using this relation as a prior to better constrain the lags of each source.
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Figure 6.2: Sketch of a Probabilistic Graphical Model for single-source model (left) and hier-
archical population model (right) of lag recovery for one response line. In the single-source model,
lags are modeled for each source individually by a Bayesian model that encompasses only one source
at a time. In a hierarchical model, lags for a ‘plate’ of sources are fit simultaneously, with their lags
related by population levels priors like the R-L relationship. Properties of these priors are tuned
as model parameters, with the total Bayesian model encompassing the entire set of AGN at once.

Along a similar line of reasoning, there is good physical reason to believe different emission
lines from a single AGN should produce similar lags, as they are both emitted from the same
geometric features. It has been demonstrated that the lags for Hβ and MgII are of similar
scale for a single source, while CIV lags are ∼ 3 − 4 times smaller [21]. Though we have
found in this thesis that simultaneous fitting of multiple lags in a single source does not
markedly improve results by itself, such a relationship between the different lag parameters
does provide an opportunity to extract some constraining power from low signal to noise
source. In many 2-line sources in the OzDES sample, one of the lags fails to be constrained
at all (e.g. Figure 5.1). By employing a ‘lag similarity’ prior, constraining ∆t1 ≈ ∆t2, we
can use a good lag recovery for one line to infer the lag for another. The properties of such
a prior, much like the parameters of the R-L relationships, can also be constrained in a
hierarchical way.

Such priors will have the greatest effect on poorly constrained sources. Such sources tend
to occur at the edge of our observation range, (e.g. the low signal to noise of low redshift
CIV sources), and so any predictive power we can derive from such sources will improve not
only the number of data points we have, but also their range. We note in Section 5.1 that
the 2-line MgII sources, by the R-L relationship recovered by Yu et al. [45], are expected
to have lags near 540 d. This range is near a seasonal gap, which is associated with poor
lag recovery [30], and is an example of a data range that would benefit from additional
constraining power.
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7
Conclusion

The recent generation of multi-object AGN reverberation campaigns presents an unprece-
dented opportunity for measurements of supermassive black hole masses deep into the cosmic
past. As these surveys draw to a close, we have found that the seasonal observation win-
dows of such surveys have lead to significant measurement noise, and the existing methods
for counter-acting this noise drastically limit the number of objects we can reliably extract
information from. In this thesis, I demonstrate that the existing tools for reverberation
mapping are poorly suited to these seasonal observations, and that there is a clear need for
modern alternatives that are more appropriate for these unique challenges.

In this thesis, I have demonstrated that JAVELIN, a program that stands as the existing
state of the art in AGN reverberation mapping, has failure modes that are significant and
common when applied to AGN with seasonal gaps. I have identified the mechanisms and
impact of these failure modes, and have presented a new alternative program that makes use
of new sampling techniques that does not share these issues. I demonstrate that this new
program, LITMUS, reliably outperforms JAVELIN in recovering the true underlying likelihood
distributions in AGN reverberation mapping, and that this improved performance returns
results with higher precision and less deviation from the underlying truth values.

However, LITMUS’s practical utility is limited by it’s lack of suitable and effective methods
for rejecting false-positives, as the the existing tools are either ineffective or maleficial. I
find that established methods of false positive rejection fail when applied to LITMUS in both
simulated and real data, and identify a fundamental incompatibility between the mechanisms
of these quality cuts and the lag likelihood distributions recovered by LITMUS. Without
effective alternatives to these methods, LITMUS is of limited applicability to samples with a
high false-positive rate like OzDES. For sources with previously published lags, I find that
my new method produces results that are in good agreement.

I also test the effectiveness of fitting multiple lags simultaneously for AGN in which we
can observe more than one reverberating emission lines in place of the common approach of
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recovering them independently. I find that, in both real and simulated data, this technique
does not offer any consistent improvement in results for the measurement quality of the
OzDES sample. This multi-line fitting does not present any promise in application to current
data, but may show better results in future surveys in which the response signals have a
higher signal to noise.

LITMUS’s improved accuracy has the potential to decrease the number of discarded false
negatives in real data, and, if applied properly, presents an opportunity to increase the
number of meaningful lag recoveries from multi-object campaigns like OzDES. Only a few
dozen MgII lags have been recovered at high redshift in total, and so even a marginal
increase in the number of these recoveries will present a significant advancement. Without
effective tests of the reliability of its measurements, LITMUS presents only half a solution
to the existing problems of aliasing in AGN RM, and so development of such tests is an
important avenue of future research. As the first generation of surveys like OzDES draw
to a close, there is strong motivation to extract as much information as possible from their
measurements. LITMUS, if properly complemented by surrounding tools and procedures as
JAVELIN is, presents the potential to measurably improve the number and quality of results
recovered from such surveys.



A
Recovered Lag Summary for OzDES Two-Line

Sources

These tables list the recovered lags for all 92 OzDES sources with multiple lines visible as
recovered by LITMUS. Lags are measured from the median of the recovered distribution, and
the recovery uncertainty is given as the difference between the lags of the 18.2 and 62.8
percentiles. Results are presented for fitting lags independently and simultaneously.

Independent Fitting Simultaneous Fitting

Index OzDES ID Lag Error Lag Error

7 2925552152 107.0 93.5 111.9 95.3
19 2925858108 549.8 439.4 551.6 471.0
79 2970604169 149.8 76.5 160.4 88.7
88 2971028700 140.0 117.4 152.5 111.3
90 2971086054 134.0 41.1 155.1 59.3
91 2971134055 138.8 51.2 143.1 357.0

Table A.1: Recovered LITMUS lags for Hβ for independent
& simultaneous 2 line fitting

Independent Fitting Simultaneous Fitting

Index OzDES ID Lag Error Lag Error

0 2925372393 210.7 330.4 204.8 72.1
1 2925373860 191.4 427.5 161.2 390.0
2 2925375402 178.6 346.5 511.8 351.1
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3 2925420688 42.4 48.1 42.2 19.5
4 2925515125 782.1 33.3 781.4 34.8
5 2925523772 548.8 444.7 509.8 408.7
6 2925551147 605.9 318.1 606.5 319.2
7 2925552152 562.8 183.9 540.9 166.7
8 2925606181 518.1 19.3 518.0 19.9
9 2925609647 153.2 78.6 155.9 77.1
10 2925637387 529.9 37.9 530.0 38.5
11 2925674035 507.0 462.3 510.2 467.5
12 2925685619 170.2 428.2 171.1 410.6
13 2925693212 462.6 364.4 456.2 377.2
14 2925707000 455.0 71.7 678.4 120.3
15 2925718880 518.2 154.4 221.2 389.6
16 2925786831 227.5 458.8 185.9 442.9
17 2925835393 135.5 23.9 135.6 23.8
18 2925857917 195.3 59.9 194.9 59.2
19 2925858108 12.5 86.1 13.0 185.1
20 2937741147 597.1 28.6 597.1 28.4
21 2937810288 568.2 579.4 569.3 575.0
22 2937856748 229.5 610.0 207.7 608.6
23 2937895789 534.2 63.3 535.9 70.1
24 2937961955 524.8 19.1 525.0 19.4
25 2938049569 657.1 240.8 662.6 231.6
26 2938055829 117.1 118.6 120.0 119.6
27 2938228331 210.6 369.3 511.8 365.6
28 2938254204 150.8 27.2 150.6 27.2
29 2938258860 156.3 22.0 156.3 21.6
30 2938268664 179.2 28.6 193.4 372.4
31 2938398472 577.4 423.5 579.9 33.0
32 2938497808 517.8 26.4 517.4 27.1
33 2938498296 530.9 526.5 538.6 531.5
34 2938638637 189.5 88.4 193.3 324.7
35 2938666749 782.5 54.5 782.4 57.6
36 2938756405 532.8 20.5 532.7 20.5
37 2938870373 515.0 401.7 523.1 45.3
38 2938878570 526.3 166.9 531.7 181.8
39 2938969598 507.2 95.9 507.7 96.8
40 2938985411 494.0 104.3 492.0 113.5
41 2939225137 211.5 394.9 195.0 239.9
42 2939317867 80.6 1.5 80.7 75.0
43 2939348426 523.5 348.3 189.1 418.9
44 2939394160 236.2 385.6 552.9 351.7
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45 2939489514 528.3 377.6 519.2 368.6
46 2939520972 506.9 391.9 168.2 51.2
47 2939531854 523.6 408.9 542.4 270.1
48 2939622630 633.1 26.9 632.7 26.4
49 2939627477 613.5 402.9 628.7 34.1
51 2939649603 751.4 91.3 751.9 89.3
52 2939652807 157.3 112.0 156.0 108.4
53 2939694336 492.0 389.8 524.9 42.3
54 2939771369 528.1 436.0 288.4 440.6
55 2939776918 556.9 53.0 556.1 56.2
56 2939791816 525.0 63.2 525.6 64.2
57 2940060892 103.4 79.9 186.9 429.6
58 2940088831 202.8 334.0 200.5 24.8
59 2940097386 530.6 60.0 521.8 89.3
60 2940140085 547.9 54.8 542.6 90.4
61 2940147277 162.5 13.2 162.5 13.2
62 2940260013 538.9 323.4 524.7 331.3
63 2940327071 208.0 266.0 195.6 57.2
64 2940351862 180.6 61.1 181.6 61.7
65 2940510474 525.2 29.3 527.1 29.6
66 2940557913 525.8 385.6 509.2 386.5
67 2940670625 176.1 37.4 179.4 34.5
68 2940876978 558.1 68.9 552.6 69.7
69 2940901822 217.9 379.4 216.0 375.6
70 2940908514 186.5 392.7 161.7 382.9
71 2940922093 637.7 606.8 188.9 623.3
72 2940963619 745.1 297.9 750.3 296.8
73 2970356187 479.7 93.3 478.2 95.7
74 2970386160 512.4 37.1 512.7 39.6
75 2970400768 543.1 44.8 546.0 41.5
76 2970414144 523.1 360.7 510.8 377.5
77 2970460831 140.4 45.9 140.7 44.6
78 2970569124 559.4 26.0 560.2 25.9
79 2970604169 262.0 43.4 259.4 44.3
80 2970611652 521.8 19.0 522.0 18.9
81 2970744291 500.7 49.5 178.3 349.6
82 2970786038 174.8 28.3 175.2 28.1
83 2970791376 784.8 2.6 784.7 2.7
84 2970798013 134.0 53.8 133.3 57.7
85 2970807282 582.6 42.8 585.5 38.9
86 2970850376 510.6 23.3 510.5 22.9
87 2970951335 557.9 27.9 557.3 33.3
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88 2971028700 97.2 160.4 12.1 126.2
89 2971049565 524.3 378.7 526.6 386.1
90 2971086054 530.9 29.2 525.8 372.3
91 2971134055 550.9 42.0 537.9 44.8
92 2971214955 545.8 13.7 545.9 13.6

Table A.2: Recovered LITMUS lags for MgII for indepen-
dent & simultaneous 2 line fitting

Independent Fitting Simultaneous Fitting

Index OzDES ID Lag Error Lag Error

0 2925372393 409.7 540.8 418.5 534.2
1 2925373860 361.1 549.1 360.0 564.5
2 2925375402 402.2 530.4 405.8 538.2
3 2925420688 417.4 571.6 423.9 568.8
4 2925515125 506.6 530.7 505.4 533.3
5 2925523772 108.9 432.0 135.3 160.8
6 2925551147 485.2 527.1 496.1 525.3
8 2925606181 432.0 534.8 390.7 563.1
9 2925609647 331.3 528.7 341.4 529.1
10 2925637387 370.4 512.2 340.4 510.2
11 2925674035 395.6 560.2 397.2 554.4
12 2925685619 496.6 552.8 496.5 547.9
13 2925693212 433.0 512.2 432.5 497.6
14 2925707000 387.7 544.6 389.7 541.0
15 2925718880 279.9 528.6 232.0 442.5
16 2925786831 370.8 543.0 365.8 537.8
17 2925835393 367.7 553.5 441.1 553.7
18 2925857917 396.0 547.9 394.2 540.0
20 2937741147 337.9 564.4 348.9 570.0
21 2937810288 465.2 518.7 465.8 515.6
22 2937856748 391.0 530.6 401.6 523.5
23 2937895789 576.4 505.5 595.3 509.7
24 2937961955 412.4 508.6 406.4 526.5
25 2938049569 503.3 562.5 506.0 564.7
26 2938055829 452.9 553.0 444.5 565.4
27 2938228331 405.6 548.8 402.5 553.1
28 2938254204 346.9 559.1 330.7 566.9
29 2938258860 409.7 589.1 408.2 614.9
30 2938268664 367.1 511.9 383.4 554.8
31 2938398472 393.0 559.3 392.9 558.5
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32 2938497808 265.4 500.4 390.6 585.4
33 2938498296 417.5 342.1 412.8 345.6
34 2938638637 351.5 525.5 367.4 550.3
35 2938666749 429.6 552.5 418.2 542.8
36 2938756405 402.6 473.5 373.7 488.1
37 2938870373 456.1 587.1 464.1 596.6
38 2938878570 457.1 519.8 435.9 533.8
39 2938969598 510.6 617.6 441.9 631.8
40 2938985411 430.1 571.2 395.2 575.8
41 2939225137 413.6 570.4 412.5 563.1
42 2939317867 389.2 461.4 378.4 483.3
43 2939348426 381.9 537.8 382.5 533.2
44 2939394160 441.1 556.5 449.6 568.9
45 2939489514 394.6 554.4 395.5 555.8
46 2939520972 413.0 559.9 415.6 553.7
47 2939531854 442.8 647.9 453.8 652.3
48 2939622630 331.3 412.3 310.6 360.3
49 2939627477 384.2 534.0 383.0 532.1
51 2939649603 354.4 551.2 350.3 542.6
52 2939652807 258.5 547.7 246.1 533.0
53 2939694336 405.6 560.5 408.9 559.4
54 2939771369 432.2 533.5 430.9 538.9
55 2939776918 385.1 558.1 381.2 569.5
56 2939791816 528.5 581.7 515.9 594.3
57 2940060892 381.1 565.2 387.0 552.7
58 2940088831 447.4 462.0 472.8 461.6
59 2940097386 354.0 552.2 367.1 548.6
60 2940140085 396.2 538.3 394.0 542.4
61 2940147277 295.2 511.5 287.2 530.4
62 2940260013 388.3 540.9 385.6 538.7
63 2940327071 426.8 547.2 442.0 535.9
64 2940351862 357.5 518.4 396.5 541.4
65 2940510474 138.9 375.4 119.0 158.0
66 2940557913 405.9 521.9 389.6 552.7
67 2940670625 389.5 528.7 388.2 532.8
68 2940876978 471.7 481.1 454.2 487.9
69 2940901822 410.5 539.5 415.8 534.0
70 2940908514 366.2 527.5 352.7 525.4
71 2940922093 375.2 555.1 375.6 551.8
72 2940963619 401.2 507.4 402.3 508.7
73 2970356187 404.8 517.9 400.9 525.8
74 2970386160 616.5 535.8 619.2 518.2
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75 2970400768 337.8 525.0 286.0 509.2
76 2970414144 409.4 555.2 393.3 566.5
77 2970460831 211.2 450.7 262.2 475.4
78 2970569124 462.7 484.2 419.9 511.5
80 2970611652 488.5 555.3 467.3 538.7
81 2970744291 386.7 498.3 386.6 495.4
82 2970786038 358.7 488.2 359.0 527.0
83 2970791376 527.1 490.5 525.6 506.0
84 2970798013 356.3 523.4 353.2 522.2
85 2970807282 370.2 534.3 348.9 540.1
86 2970850376 337.5 498.1 314.8 483.6
87 2970951335 394.1 536.0 402.5 543.7
89 2971049565 380.7 487.8 314.5 455.3
92 2971214955 486.3 532.7 417.0 568.9

Table A.3: Recovered LITMUS lags for CIV for indepen-
dent & simultaneous 2 line fitting



B
Quality Cuts of OzDES Sources & Impact of

Simultaneous Lag Recovery

These tables list the impact of multi-line fitting on the lags recovered for all 92 sources in the
MgII sample. Each table lists whether a particular lag recovery passes or fails the quality
cuts of Penton et al. [32] for both independent and simultaneous lag recovery, as well as
the correlation parameter ‘R’, which describes how similar the lag likelihood distribution is
between these two fit cases.

Independent Fitting Simultaneous Fitting

OzDES ID Passes Cut 1 Passes Cut 2 Passes Cut 1 Passes Cut 2 R

2925373860 TRUE FALSE TRUE FALSE 0.995
2925707000 TRUE FALSE TRUE FALSE 0.999
2970400768 TRUE FALSE TRUE TRUE 0.97
2970807282 TRUE FALSE TRUE FALSE 0.988
2970951335 TRUE TRUE TRUE TRUE 0.816
2971049565 TRUE FALSE TRUE TRUE 0.975

Table B.1: Quality cut passes for Hβ two-line OzDES
sources.

Independent Fitting Simultaneous Fitting

OzDES ID Passes Cut 1 Passes Cut 2 Passes Cut 1 Passes Cut 2 R

2925552152 TRUE TRUE TRUE FALSE 0.98
2925858108 TRUE FALSE TRUE FALSE 0.949
2970604169 TRUE FALSE TRUE FALSE 0.578
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2971028700 TRUE TRUE TRUE TRUE 1
2971086054 TRUE TRUE TRUE TRUE 1
2971134055 TRUE FALSE TRUE FALSE 0.906
2925372393 TRUE FALSE TRUE FALSE 0.999
2925373860 TRUE FALSE TRUE FALSE 0.979
2925375402 TRUE TRUE TRUE TRUE 1
2925420688 TRUE TRUE TRUE TRUE 0.997
2925515125 TRUE TRUE TRUE TRUE 1
2925523772 TRUE FALSE TRUE FALSE 0.997
2925551147 TRUE FALSE TRUE FALSE 1
2925606181 TRUE FALSE TRUE FALSE 0.994
2925609647 TRUE FALSE TRUE TRUE 0.251
2925637387 TRUE FALSE TRUE FALSE 0.444
2925674035 FALSE FALSE FALSE FALSE 0.974
2925685619 TRUE TRUE TRUE TRUE 1
2925693212 TRUE TRUE TRUE TRUE 1
2925707000 TRUE FALSE TRUE FALSE 1
2925718880 TRUE TRUE TRUE TRUE 1
2925786831 FALSE FALSE FALSE FALSE 0.999
2925835393 TRUE FALSE FALSE FALSE 0.976
2925857917 TRUE TRUE TRUE TRUE 0.999
2937741147 TRUE TRUE TRUE TRUE 1
2937810288 FALSE FALSE FALSE FALSE 0.999
2937856748 TRUE FALSE TRUE FALSE 1
2937895789 TRUE FALSE TRUE FALSE 0.842
2937961955 TRUE TRUE TRUE TRUE 1
2938049569 TRUE TRUE TRUE TRUE 1
2938055829 TRUE FALSE TRUE TRUE 0.823
2938228331 TRUE TRUE TRUE FALSE 0.989
2938254204 TRUE TRUE TRUE TRUE 1
2938258860 FALSE FALSE FALSE FALSE 0.994
2938268664 TRUE FALSE TRUE FALSE 0.993
2938398472 TRUE TRUE TRUE TRUE 1
2938497808 TRUE TRUE TRUE TRUE 1
2938498296 TRUE TRUE TRUE FALSE 0.966
2938638637 TRUE FALSE TRUE FALSE 0.967
2938666749 TRUE FALSE TRUE FALSE 1
2938756405 TRUE FALSE TRUE FALSE 0.998
2938870373 TRUE FALSE TRUE FALSE 0.954
2938878570 TRUE TRUE TRUE TRUE 0.996
2938969598 TRUE FALSE TRUE FALSE 0.675
2938985411 TRUE FALSE TRUE FALSE 0.876
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2939225137 TRUE FALSE TRUE FALSE 0.946
2939317867 TRUE TRUE TRUE FALSE 0.705
2939348426 TRUE FALSE TRUE FALSE 0.805
2939394160 TRUE TRUE TRUE TRUE 1
2939489514 TRUE TRUE TRUE FALSE 0.95
2939520972 TRUE FALSE TRUE FALSE 1
2939531854 TRUE FALSE TRUE FALSE 0.999
2939622630 TRUE TRUE FALSE FALSE 0.717
2939627477 FALSE FALSE TRUE FALSE 0.94
2939649603 TRUE TRUE TRUE TRUE 0.999
2939652807 TRUE TRUE TRUE TRUE 0.999
2939694336 TRUE FALSE TRUE TRUE 0.841
2939771369 TRUE TRUE TRUE FALSE 0.983
2939776918 TRUE FALSE TRUE TRUE 0.912
2939791816 TRUE FALSE TRUE TRUE 0.993
2940060892 TRUE TRUE TRUE TRUE 1
2940088831 TRUE FALSE TRUE FALSE 0.912
2940097386 TRUE TRUE TRUE FALSE 0.985
2940140085 TRUE TRUE TRUE TRUE 1
2940147277 TRUE TRUE TRUE TRUE 0.995
2940260013 TRUE FALSE TRUE FALSE 0.968
2940327071 TRUE TRUE TRUE TRUE 0.99
2940351862 TRUE TRUE TRUE TRUE 0.987
2940510474 FALSE FALSE FALSE FALSE 0.995
2940557913 TRUE FALSE TRUE FALSE 0.936
2940670625 TRUE FALSE FALSE FALSE 0.741
2940876978 TRUE FALSE TRUE FALSE 0.999
2940901822 TRUE FALSE TRUE FALSE 0.999
2940908514 TRUE TRUE TRUE TRUE 0.999
2940922093 TRUE TRUE TRUE TRUE 0.997
2940963619 TRUE FALSE TRUE FALSE 0.87
2970356187 TRUE TRUE TRUE TRUE 0.999
2970386160 TRUE TRUE TRUE TRUE 1
2970400768 TRUE TRUE TRUE TRUE 0.994
2970414144 TRUE TRUE TRUE TRUE 1
2970460831 TRUE FALSE TRUE TRUE 0.356
2970569124 TRUE TRUE TRUE TRUE 1
2970611652 TRUE TRUE TRUE TRUE 1
2970744291 TRUE TRUE TRUE TRUE 0.998
2970786038 TRUE TRUE TRUE TRUE 0.987
2970791376 TRUE TRUE TRUE TRUE 1
2970798013 TRUE TRUE TRUE TRUE 0.994
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2970807282 TRUE FALSE TRUE FALSE 0.955
2970850376 TRUE FALSE TRUE FALSE 0.986
2970951335 TRUE FALSE TRUE TRUE 0.961
2971049565 TRUE TRUE TRUE TRUE 0.983
2971214955 TRUE TRUE TRUE TRUE 1

Table B.2: Quality cut passes for MgII two-line OzDES
sources.

Independent Fitting Simultaneous Fitting

OzDES ID Passes Cut 1 Passes Cut 2 Passes Cut 1 Passes Cut 2 R

2925552152 FALSE FALSE FALSE FALSE 0.999
2925858108 FALSE FALSE FALSE FALSE 0.995
2970604169 FALSE FALSE FALSE FALSE 0.996
2971028700 FALSE FALSE FALSE FALSE 0.999
2971086054 FALSE FALSE FALSE FALSE 0.997
2971134055 TRUE FALSE TRUE FALSE 0.867
2925372393 FALSE FALSE FALSE FALSE 0.999
2925375402 FALSE FALSE TRUE FALSE 0.977
2925420688 TRUE FALSE TRUE FALSE 0.993
2925515125 FALSE FALSE FALSE FALSE 0.994
2925523772 TRUE FALSE FALSE FALSE 0.999
2925551147 FALSE FALSE FALSE FALSE 0.999
2925606181 TRUE FALSE TRUE FALSE 0.998
2925609647 FALSE FALSE TRUE FALSE 0.999
2925637387 TRUE FALSE FALSE FALSE 0.928
2925674035 TRUE FALSE TRUE FALSE 0.999
2925685619 FALSE FALSE FALSE FALSE 0.968
2925693212 FALSE FALSE FALSE FALSE 0.999
2925718880 FALSE FALSE FALSE FALSE 0.998
2925786831 FALSE FALSE FALSE FALSE 1
2925835393 TRUE FALSE TRUE FALSE 0.993
2925857917 FALSE FALSE FALSE FALSE 0.989
2937741147 TRUE FALSE FALSE FALSE 0.991
2937810288 FALSE FALSE FALSE FALSE 0.998
2937856748 FALSE FALSE FALSE FALSE 0.998
2937895789 FALSE FALSE FALSE FALSE 0.999
2937961955 FALSE FALSE FALSE FALSE 0.986
2938049569 FALSE FALSE FALSE FALSE 0.973
2938055829 TRUE FALSE FALSE FALSE 0.964
2938228331 TRUE FALSE TRUE FALSE 0.998
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2938254204 FALSE FALSE FALSE FALSE 0.865
2938258860 TRUE FALSE TRUE FALSE 0.998
2938268664 TRUE FALSE FALSE FALSE 0.99
2938398472 FALSE FALSE FALSE FALSE 0.998
2938497808 TRUE FALSE FALSE FALSE 0.985
2938498296 FALSE FALSE TRUE FALSE 0.99
2938638637 TRUE FALSE TRUE FALSE 0.986
2938666749 FALSE FALSE FALSE FALSE 0.977
2938756405 FALSE FALSE TRUE FALSE 0.994
2938870373 FALSE FALSE FALSE FALSE 0.998
2938878570 FALSE FALSE TRUE FALSE 0.989
2938969598 TRUE FALSE FALSE FALSE 0.999
2938985411 FALSE FALSE FALSE FALSE 0.996
2939225137 FALSE FALSE FALSE FALSE 0.999
2939317867 FALSE FALSE FALSE FALSE 0.998
2939348426 FALSE FALSE FALSE FALSE 0.994
2939394160 TRUE FALSE TRUE FALSE 0.939
2939489514 TRUE FALSE FALSE FALSE 0.999
2939520972 FALSE FALSE FALSE FALSE 0.999
2939531854 FALSE FALSE FALSE FALSE 0.997
2939622630 FALSE FALSE FALSE FALSE 0.999
2939627477 TRUE FALSE TRUE FALSE 0.999
2939649603 FALSE FALSE FALSE FALSE 0.998
2939652807 FALSE FALSE FALSE FALSE 0.994
2939694336 TRUE FALSE FALSE FALSE 0.999
2939771369 FALSE FALSE FALSE FALSE 0.952
2939776918 FALSE FALSE FALSE FALSE 0.995
2939791816 TRUE FALSE FALSE FALSE 0.998
2940060892 FALSE FALSE FALSE FALSE 0.979
2940088831 FALSE FALSE TRUE FALSE 0.999
2940097386 FALSE FALSE FALSE FALSE 0.998
2940140085 FALSE FALSE FALSE FALSE 0.98
2940147277 TRUE FALSE TRUE FALSE 0.897
2940260013 FALSE FALSE FALSE FALSE 0.987
2940327071 FALSE FALSE FALSE FALSE 0.998
2940351862 FALSE FALSE FALSE FALSE 0.996
2940510474 TRUE FALSE FALSE FALSE 0.996
2940557913 FALSE FALSE FALSE FALSE 0.997
2940670625 FALSE FALSE FALSE FALSE 0.999
2940876978 TRUE FALSE TRUE FALSE 1
2940901822 TRUE FALSE TRUE FALSE 0.999
2940908514 TRUE FALSE TRUE FALSE 0.996
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2940922093 TRUE FALSE FALSE FALSE 0.95
2940963619 FALSE FALSE FALSE FALSE 0.995
2970356187 FALSE FALSE TRUE FALSE 0.969
2970386160 FALSE FALSE TRUE FALSE 0.978
2970414144 FALSE FALSE FALSE FALSE 0.991
2970460831 FALSE FALSE FALSE FALSE 0.998
2970569124 TRUE FALSE FALSE FALSE 0.98
2970611652 FALSE FALSE TRUE FALSE 0.981
2970744291 FALSE FALSE FALSE FALSE 0.999
2970786038 FALSE FALSE FALSE FALSE 0.991
2970791376 FALSE FALSE FALSE FALSE 0.976
2970798013 TRUE FALSE FALSE FALSE 0.998
2970850376 FALSE FALSE FALSE FALSE 0.976
2971214955 FALSE FALSE TRUE FALSE 0.956

Table B.3: Quality cut passes for CIV two-line OzDES
sources.



C
Summary of Signal to Noise Ratios For OzDES Two-Line

Sources

The following table lists a summary of the measurement quality for all sources in the OzDES two-line sample. For each source,
the number of measurements and signal to noise ratio is provided for the continuum and each of the two response line signals.

Index OzDES ID
Signal
Type

Continuum
Measurements

Response 1
Measurements

Response 2
Measurements

Continuum
SNR

Response 1
SNR

Response 2
SNR

0 2925372393 MgII / CIV 131 23 17 0.12 0.38 0.00
1 2925373860 MgII / CIV 137 23 16 0.17 0.40 0.00
2 2925375402 MgII / CIV 132 24 19 0.10 0.17 0.00
3 2925420688 MgII / CIV 139 23 19 0.16 0.17 0.00
4 2925515125 MgII / CIV 136 20 15 0.23 0.22 0.00
5 2925523772 MgII / CIV 134 23 16 0.10 0.21 0.00
6 2925551147 MgII / CIV 129 20 16 0.28 0.08 0.00

77



78
S
u
m
m
a
r
y
o
f
S
ig
n
a
l
t
o

N
o
ise

R
a
t
io
s
F
o
r
O
z
D
E
S
T
w
o
-L

in
e
S
o
u
r
c
e
s

7 2925552152 Hβ / MgII 133 16 21 0.38 0.09 0.11
8 2925606181 MgII / CIV 130 21 15 0.31 0.21 0.00
9 2925609647 MgII / CIV 132 20 8 0.07 0.30 0.00
10 2925637387 MgII / CIV 135 20 16 0.21 0.27 0.00
11 2925674035 MgII / CIV 132 21 15 0.09 0.52 0.00
12 2925685619 MgII / CIV 130 21 15 0.26 0.99 0.00
13 2925693212 MgII / CIV 124 19 16 0.15 0.17 0.00
14 2925707000 MgII / CIV 131 19 16 0.05 0.37 0.00
15 2925718880 MgII / CIV 129 21 16 0.12 0.35 0.00
16 2925786831 MgII / CIV 135 6 6 0.05 0.26 0.00
17 2925835393 MgII / CIV 134 19 15 0.17 0.45 0.00
18 2925857917 MgII / CIV 130 20 16 0.13 0.17 0.00
19 2925858108 Hβ / MgII 133 15 21 0.23 0.09 0.11
20 2937741147 MgII / CIV 138 25 20 0.11 0.26 0.00
21 2937810288 MgII / CIV 137 22 20 0.20 0.15 0.00
22 2937856748 MgII / CIV 135 24 16 0.10 0.15 0.00
23 2937895789 MgII / CIV 136 18 15 0.15 0.04 0.00
24 2937961955 MgII / CIV 133 29 21 0.14 0.08 0.00
25 2938049569 MgII / CIV 143 21 18 0.18 0.08 0.00
26 2938055829 MgII / CIV 142 21 19 0.19 0.12 0.00
27 2938228331 MgII / CIV 140 22 19 0.09 0.13 0.00
28 2938254204 MgII / CIV 131 22 16 0.33 0.44 0.00
29 2938258860 MgII / CIV 142 21 5 0.15 0.34 0.00
30 2938268664 MgII / CIV 94 21 19 0.26 0.35 0.00
31 2938398472 MgII / CIV 136 32 23 0.12 0.23 0.00
32 2938497808 MgII / CIV 137 18 16 0.22 0.21 0.00
33 2938498296 MgII / CIV 132 13 12 0.14 0.00 0.47
34 2938638637 MgII / CIV 135 22 19 0.31 0.15 0.00
35 2938666749 MgII / CIV 136 23 20 0.32 0.19 0.00
36 2938756405 MgII / CIV 134 33 25 0.20 0.23 0.00
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37 2938870373 MgII / CIV 132 22 18 0.10 0.36 0.00
38 2938878570 MgII / CIV 133 30 25 0.27 0.22 0.00
39 2938969598 MgII / CIV 136 33 24 0.18 0.15 0.00
40 2938985411 MgII / CIV 135 32 24 0.11 0.10 0.00
41 2939225137 MgII / CIV 170 29 21 0.16 0.13 0.00
42 2939317867 MgII / CIV 156 28 14 0.10 0.70 0.00
43 2939348426 MgII / CIV 149 40 24 0.05 0.32 0.00
44 2939394160 MgII / CIV 139 28 22 0.17 0.28 0.00
45 2939489514 MgII / CIV 169 32 20 0.18 0.25 0.00
46 2939520972 MgII / CIV 166 32 21 0.11 0.18 0.00
47 2939531854 MgII / CIV 154 29 19 0.12 0.13 0.00
48 2939622630 MgII / CIV 205 34 22 0.17 0.17 0.00
49 2939627477 MgII / CIV 172 33 21 0.09 0.21 0.00
51 2939649603 MgII / CIV 144 25 21 0.47 0.26 0.00
52 2939652807 MgII / CIV 106 23 19 0.21 0.25 0.00
53 2939694336 MgII / CIV 154 28 22 0.10 0.14 0.00
54 2939771369 MgII / CIV 85 24 19 0.10 0.24 0.00
55 2939776918 MgII / CIV 147 25 22 0.12 0.26 0.00
56 2939791816 MgII / CIV 225 55 26 0.12 0.14 0.00
57 2940060892 MgII / CIV 139 24 20 0.06 0.13 0.00
58 2940088831 MgII / CIV 131 23 19 0.14 0.30 0.00
59 2940097386 MgII / CIV 139 23 19 0.09 0.18 0.00
60 2940140085 MgII / CIV 162 40 27 0.00 0.28 0.00
61 2940147277 MgII / CIV 176 39 26 0.19 0.31 0.00
62 2940260013 MgII / CIV 149 27 22 0.07 0.13 0.00
63 2940327071 MgII / CIV 142 22 19 0.11 0.16 0.00
64 2940351862 MgII / CIV 134 24 20 0.11 0.75 0.00
65 2940510474 MgII / CIV 180 42 27 0.11 0.32 0.00
66 2940557913 MgII / CIV 119 36 23 0.17 0.37 0.00
67 2940670625 MgII / CIV 152 16 12 0.09 0.55 0.00
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68 2940876978 MgII / CIV 186 35 25 0.14 0.17 0.00
69 2940901822 MgII / CIV 190 38 25 0.18 0.15 0.00
70 2940908514 MgII / CIV 182 40 27 0.13 0.12 0.00
71 2940922093 MgII / CIV 197 40 26 0.25 0.13 0.00
72 2940963619 MgII / CIV 147 34 23 0.16 0.19 0.00
73 2970356187 MgII / CIV 115 31 17 0.20 0.17 0.00
74 2970386160 MgII / CIV 115 39 22 0.08 0.10 0.00
75 2970400768 MgII / CIV 142 38 22 0.10 0.48 0.00
76 2970414144 MgII / CIV 145 42 24 0.20 0.18 0.00
77 2970460831 MgII / CIV 178 63 23 0.19 0.14 0.00
78 2970569124 MgII / CIV 151 38 24 0.14 0.24 0.00
79 2970604169 Hβ / MgII 143 21 35 0.13 0.21 0.16
80 2970611652 MgII / CIV 141 25 21 0.17 0.31 0.00
81 2970744291 MgII / CIV 141 39 21 0.10 0.25 0.00
82 2970786038 MgII / CIV 146 38 22 0.10 0.30 0.00
83 2970791376 MgII / CIV 145 39 5 0.20 0.33 0.00
84 2970798013 MgII / CIV 147 37 24 0.13 0.12 0.00
85 2970807282 MgII / CIV 145 41 24 0.13 0.20 0.00
86 2970850376 MgII / CIV 147 41 24 0.11 0.23 0.00
87 2970951335 MgII / CIV 117 43 23 0.08 0.11 0.00
88 2971028700 Hβ / MgII 117 22 38 0.08 0.12 0.22
89 2971049565 MgII / CIV 115 34 18 0.09 0.24 0.00
90 2971086054 Hβ / MgII 114 23 35 0.15 0.11 0.27
91 2971134055 Hβ / MgII 115 22 39 0.11 0.09 0.17
92 2971214955 MgII / CIV 116 39 23 0.19 0.21 0.00

Table C.1: Summary of measurements for all OzDES
sources with two emission line signals
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